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 A r t i c l e  

 

 

PIOTR WILKIN * 

 

 

NATURALIZED REPRESENTATIONS—  

A USEFUL GOAL OR A USEFUL FICTION? 

 

 

S U M M A R Y : One of the key concepts of naturalized epistemology as well as the 

cognitive sciences that stem from it is the naturalized concept of mental represen-

tation. Within this naturalized concept, many attempts have been made to unify 

(for humans as well as for other living organisms) the notion of representation 

error. This text makes an attempt to argue against the adequacy of using a natu-

ralized concept of representation error as well as casts doubt on the wide program 

of naturalizing concepts related to human conceptuality. 

 
K E Y W O R D S : mental representations, representation error, naturalization. 

 

 

1. INTRODUCTION  

In philosophy of mind, the naturalistic approach is becoming more and 

more popular; it is also a constitutive approach, if not for cognitive sci-

ence, then at least for some branches of it. One of the fundamental con-

cepts of cognitive science which is often naturalized is the concept of cog-

nitive representation. One of the most popular approaches to naturalizing 
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representations is that of Dretske, which ties representations with certain 

natural functions of biological organisms (Dretske, 1986). Dretske’s solu-

tion has two major strengths. From a philosophical perspective, it can 

tackle many problems that informational or correlational approaches to 

representations have had problems with (one of the key issues that the 

abovementioned approaches faced was that of the ubiquity of representa-

tions: smoke is often correlated with fire, but is smoke a cognitive repre-

sentation for fire? Does fire have cognitive representations?). From  

a methodological perspective, it can provide a universal take on represen-

tations for many classes of organisms, which lets us obtain empirical data 

about representations from studies on simple animal organisms or even 

bacteria. It also gives us a clean transition from animal cognition to hu-

man cognition—as such, it is a strong counter to all dualistic approaches 

to cognition. 

The main aim of this text is to undermine the universality of cognitive 

representations as seen by Dretske and his successors. Within this text, 

we shall be assuming the representational approach in cognitive science. 

We shall not deal with issues of anti-representationism because, while the 

question of whether cognitive representations are a valid element of the 

cognitive science landscape is no doubt interesting and valid, it is out of 

scope here and would only muddle the main points of the argumentation. 

Therefore, when we discuss the various pros and cons of the naturalistic 

approach to representations, remember we do so only under the assump-

tion that representations themselves are useful and significant. 

2. N ATURALIZED REPRESENTATIONS AND M ISREPRESENTATION  

An important feature that Dretske and many of his successors (e.g. 

Millikan) emphasize in their solution is the ability to analyze representa-

tions with respect to their correctness—in particular, to show criteria of 

misrepresentation. In Dretske’s approach, a representation of property  

X is correct when (in normal conditions) it works according to its func-

tion, that being indicating the presence of X. A key aspect of this ap-

proach is the concept of function, or more precisely, a specific type of 

function: a natural function. If we want to naturalize representations, we 

cannot simply use a general notion of function, since there are many pos-

sible classes of functions and we risk a problem we seem to have just 

averted—that of the ubiquity of representations. Therefore, we restrict 

ourselves to the class of natural functions, which are those that guarantee 
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evolutionary success. Dretske gives the example of bacteria which have  

a natural magnetic indicator of north, which allows them to move to-

wards less oxidized waters (a surplus of oxygen is deadly for the bacteria). 

The same bacteria, when moved to the southern hemisphere, will die, 

since their magnetic sensor will incorrectly direct them away from the 

pole, towards deadly waters filled with oxygen. 

It’s worth noting that even Dretske when providing the example cau-

tions against using it as an instant case of naturalized representation. 

This is due to the fact that the bacteria’s indicator simply points them 

towards magnetic north, not towards oxygen itself. Even if we assumed 

an evolutionary criteria for selecting natural functions, it’s hard to ex-

plain why the mechanism actually indicates the presence of oxygen and 

not the presence of the magnetic north, with the magnetic north being 

the environment in which the bacteria normally thrive. In other words, 

the example with the bacteria moved to the southern hemisphere might 

not be one of misrepresentation, but one of abnormal world conditions. 

Even if a given representation could be evoked by one of many independ-

ent mechanisms, it still wouldn’t be enough to tell us that it’s a represen-

tation of the property that we desire, rather than a disjunction of the 

immediate triggers (for example, if the bacteria had a light indicator to-

gether with the magnetic one, we could still say that they have a repre-

sentation of the property Light-or-North and not of the property Oxygen). 

Dretske claims that only organisms that have a set of independent repre-

sentation-controlling mechanisms and are able to switch them on during 

their lifecycle have the capacity to misrepresent. In other words, it is only 

when an organism has a representation of property X which, during vari-

ous phases of learning, is evoked by different stimuli originating from  

X (but having the common feature of being caused by X), that one can 

talk of a representation that can misrepresent. 

It should be clear now that, contrary to the promising start (of bacte-

ria having representations), to talk about representation in the Dretskian 

sense we need more complicated organisms than bacteria. However, it’s 

still a notion of representation that is scientifically attractive—most ani-

mals, even the very simple ones, have some capacity to adapt, so we 

could obtain a lot of empirical examples for representations and misrepre-

sentation from the rich world of animal behavior. 

Moreover, Millikan’s solution (1995), which was an answer to Dretske, 

manages to solve even the problem of bacterial misrepresentation. Milli-

kan solves the problem of vagueness present in Dretske’s approach by 
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assuming that for a given organism, its proper function (as Millikan calls 

her extension of the notion of natural function, see [Millikan, 1987]) is 

indicating a property that is required for the organism to survive and 

reproduce (in other words, to achieve evolutionary success). In this ap-

proach, the bacteria have the representation of Oxygen (instead of Light-

or-North) because it’s the former that is required for their survival—the 

latter is strictly accidental. 

All of the approaches mentioned are very well developed and show 

promise when it comes to studying representations in animals. However, 

do they actually make it easier for us to understand representation in 

humans? 

3. H UM AN ERRORS AND H UM ANS’ N ATURAL FUNCTION  

Let’s now look at a typical case of misrepresentation that happens 

during the human language acquisition process. A child looks at a ripe, 

red apple, reaches for it and says “tomato”—with the clear intention of 

eating the apple as a tomato. She hasn’t yet learnt that there are other 

fruits of similar size, shape and color as the tomatoes that she’s observed 

before.  

There are two possible explanations for the situation described. One is 

that the child simply has a wrong representation of tomatoes, i.e. that she 

has a representation of tomatoes, but it’s not the correct representation. 

Another explanation is that the child does have a representation of toma-

toes, but it didn’t work correctly that time. Let us call the first explana-

tion that of a general error and the latter one—a particular error. In 

both cases we now want to ask the question—how would we naturalize 

such a notion of representation? 

Note that if we want to talk about a functional approach to naturaliz-

ing representations (whether it be Dretske’s approach or Millikan’s ap-

proach), we want to talk about a biological function—one that we could 

single out in both humans and in simpler organisms (although, as we 

mentioned before, Dretske seems to believe that to properly determine  

a representational function, you need a certain level of biological complex-

ity). This function should be somehow connected with the evolutionary 

(or, more directly, reproductive) success of the organism. It’s worth not-

ing here that Millikan speaks about “representation reproduction” instead 

of “organism reproduction”, which opens up the possibility of understand-

ing it in non-biological terms. However, most of Millikan’s own research 
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pertains to biological reproductive success, so we shall assume that is the 

dominant understanding for now. We shall tackle the other possibility 

later in the text. 

Now let us consider this: can we actually find a biological function of 

the child’s organism that would determine that the proper representation 

of the tomato should be one of a tomato and not one of a red apple? Be-

fore we actually move on to try to answer this question, it’s important to 

understand that a potentially higher level of complexity (and thus,  

a more complex function) would not be problematic here. If the difference 

between human representations and simpler organism representations 

were just one of degree, that would not be a major difficulty for the natu-

ralized theory of representations. One could rightfully hold the view that 

the level of complexity of a natural function that realizes a given repre-

sentation is proportional to the complexity of the organism itself. In such 

a case we should not find it surprising that a human’s natural function is 

much more complex that one of an amoeba or bacteria. Furthermore, for 

Dretske such a situation would actually be a pro rather than a con—to 

talk about natural functions and avoid ambiguity, we need a complex 

system that makes certain choices based on more than one criterion. 

Let us therefore assume that we actually managed to discover a natu-

ral function that corresponds to the child’s representation of a tomato. 

Let’s also assume that the function actually explains the representational 

error that the child makes when calling a red apple a tomato (or when it 

reaches for the apple with the intention of eating it as a tomato, to avoid 

linguistic criteria). Can any such function really be a natural function? Of 

course, we don’t want to define the class of natural functions so widely 

that it loses its intuitive meaning—after all, we wanted to restrict the 

class of functions to natural functions precisely to avoid some problems 

with naturalizing representations. Therefore, we want to relate the natu-

ral function to the organism’s survival. However, it seems that no credible 

explanation of that sort can be actually found, as I shall now try to show. 

Starting with the most direct approach, a proponent of the naturalistic 

approach might claim that the ability to distinguish apples from tomatoes 

is critical for survival. For example, take a child that has a deadly allergy 

to apples (but not to tomatoes); a misrepresentation might turn out to be 

fatal (e.g. if the child reaches for the apple and eats it before her parents 

manage to react). This type of analysis might seem promising, since it 

only deals with biological criteria. Also, one can provide less convoluted 

examples where distinguishing one organism from another is critical for 



10 PIOTR WILKIN  

         

avoiding poisoning. Take, for example, the parasol mushroom and the 

death cap. This example is even better in that it deals with general 

mechanisms (the death cap is poisonous for humans as a species rather 

than just for individuals), so it’s easier to claim that such a function 

would be natural in the sense that it correlates with the evolutionary 

success of the species. 

However, our language is too rich to permit such an analysis for all 

concepts, so this way is doomed to fail sooner or later. We are not be able 

to find a direct evolutionary function for every single concept, although 

we can probably find a scenario in which misrepresenting a concept re-

sults in an organism’s death. However, inventing scenarios is not a good 

argumentative road—for every scenario one can find a counter-scenario in 

which having the allegedly incorrect representation ensures success (for 

example, a scenario taken almost out of Grimms’ fairy tales, where Han-

sel brings a death cap home and feeds it to the witch, who was just about 

to cook him in the oven). To justify naturalizing a representation, we 

must have a universal function—one that can be explained on the level of 

the entire species, not just single organisms. In the literature, one can 

indeed find many guidelines on how to correctly describe natural func-

tions so that they are indeed natural (i.e. so that they can be properly 

naturalized; Millikan’s analysis is a good example of this).  

We shall drop this line of enquiry now mostly because a criticism of  

a specific approach to natural functions will not be a definitive rebuttal to 

the idea of naturalizing representations in general. Even if we cannot tell 

what the evolutionary advantage is of having the representation of a con-

vertible distinct from the representation of a station wagon, the very fact 

this distinction exists might suggest that it somehow contributes to our 

survival. The proponent of the naturalization approach to representations 

might say that we might not know the exact natural function correspond-

ing to more complex concepts, but it is the task of empirical studies to 

find and describe it. 

Therefore, the objection to naturalizing representation must have  

a more fundamental nature. The question that will lead us to that objec-

tion will be the following: how do we assert misrepresentation in humans? 

What makes us say that someone misrepresents (in both the general and 

the particular sense) some class of objects (for example tomatoes or con-

vertibles)? And finally: how do we learn to make the relevant distinctions? 

The answers to those questions will hopefully cast doubt on the validity 

of the naturalization approach for human representations. 
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4. H UM ANS AND THE N ATURAL ERROR 

Humans are a very specific species in the animal kingdom in that a lot 

of their representations have a social source—they are created and 

changed not only in response to stimuli connected to the represented 

object, but also (or, one could claim, mainly) in the process of socializa-

tion. This process of socialization is special even among animals who do 

have a process of socialization—many of our representations are created 

with the help of language. I do not want to tackle the topic of the rela-

tion between social interactions and cognitive representations in this text, 

as it would be widely out of scope. This is not only true for representa-

tions on the personal level (as per the personal/subpersonal distinction 

due to [Dennett, 1969]), where the relation to language is quite obvious, 

but also on the subpersonal level. For example, take the notion of attrac-

tiveness—it would seem that the representation of a “potentially attrac-

tive mate” is something that we share with the rest of the animal king-

dom. However, a short historical enquiry is sufficient to discover that the 

socially prevalent criteria for attractiveness have changed much more 

often than would be credible for an evolutionary explanation.  

Therefore, even if we restrict ourselves to subpersonal representations, 

we cannot guarantee that they were not formed without the presence of 

social factors (unless we are talking about inborn representations; as we 

shall further discuss, the origin of representations is a quite important 

differentiating factor). Moreover, if an important feature of representa-

tions is supposed to be their durability, then the social explanation seems 

to be more plausible than the evolutionary one—the example of attrac-

tiveness suggests that social interactions are more important in determin-

ing representations than purely evolutionary factors.  

Let us come back to the definition of misrepresentation formulated 

earlier and fill in some specific objects for the variables: A thana s i u s  is 

misrepresenting the p a r a s o l  mus h ro om  if his representation (parasol 

mushroom) leads him to collect a d e a t h  c a p  in the forest (at least in 

the general case; in the particular case, he mistakenly takes a death cap 

to be a parasol mushroom). It would seem that, due to the direct biologi-

cal effects, this would be a paradigmatic case of naturalized representa-

tions—a misrepresentation leads, after all, to an organism’s death. How-

ever, is this really a case of misrepresentation? More specifically: is the 

correct representation of the parasol mushroom really what we under-

stand by the linguistic concept “parasol mushroom”? After all, we can 



12 PIOTR WILKIN  

         

imagine a case where the representation itself does not change, but the 

inclination to eat the mushroom does. This counter-argument could be 

rebutted by asserting that having distinct representations for a death cap 

and a parasol mushroom is evolutionarily superior to having just a repre-

sentation of a parasol mushroom as an inedible one (again: imagine  

a scenario in which we have a tribe living in a forest where their only 

potential food sources are either death caps or parasol mushrooms). How-

ever, we can also imagine that the very same tribe represents all those 

mushrooms as parasol mushrooms—just with the distinction that the 

greener ones are poisonous, while the more brown-tinted ones are edible. 

In other words, they ascribe the edibility criteria to certain states of a 

given type of organism rather than to a distinct type of organism (a real-

life case of such a distinction is the mushroom commonly known as  

a “puffball”, whose early forms are actually edible).  

Perhaps by now an analogy to a famous argument from philosophy of 

language—Wittgenstein’s criticism of “private language errors” (Wittgen-

stein, 1953) later expanded upon by Kripke (1982). This analogy does not 

seem to be accidental—I believe that talking about misrepresentation in 

the context of our cognitive representations (other than the native ones) 

in the same way we talk about misrepresentation in the case of simpler 

organisms in relation to their natural functions is a dead end. 

Most arguments that Wittgenstein (and later Kripke) use to refute the 

possibility of a naturalized conceptual error can be adapted to the case of 

misrepresentation. Take for example the abovementioned case with death 

caps and parasol mushrooms. Even Wittgenstein’s original example (recall 

that Wittgenstein, and after him Kripke, claimed that we can’t determine 

whether someone, when talking about addition, or the use of the plus sign, 

really means “plus” instead of “quus”, where quus is different from plus in 

that it behaves differently in very specific conditions which do not obtain 

in the given case) could be possibly used (if not for the fact that the con-

cepts used are highly abstract, which makes finding the corresponding 

representations difficult). Note that the gist of the argument is the same 

in both cases. Wittgenstein (and Kripke after him) says the following: 

using purely objective criteria, we are not able to determine, which of the 

two descriptions of the concept is the correct one—similarly, we cannot 

determine which of the two descriptions of cognitive representations is the 

correct one other than rationalizing it ad hoc after the fact (“weird para-

sol mushroom” vs “parasol mushroom / death cap”).  
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This argument can also be used in two ways. If our misrepresentation 

is understood as a general error (having an incorrect representation), the 

question becomes: how do we determine the correctness of the representa-

tion (in other words, how do we select one specific proper function over 

all others). If we understand it as a particular error instead, meaning  

a representation is used incorrectly, then we can ask, after Wittgenstein: 

how do we know that it was an error and not an exception specified in 

the rule? 

However, the naturalization proponents are in a better place than 

Wittgenstein’s opponents in the rule-based concept usage debate—they 

can still fall back on the concept of natural functions and defend our rep-

resentations by relating them to biologically proper functions. However, 

that route seems a dead end as well—even in the case of the death cap, 

which seems well-suited for naturalization, it’s hard to show a clear ad-

vantage of the double representation version over the “weird parasol 

mushroom” version.  

To the fundamental arguments one can add empirical arguments as 

well. Even if we could agree that the idea of naturalized misrepresenta-

tions can be defended on theoretical grounds, it would be hard to defend 

the claim that our cognitive representations are really formed in the way 

that this idea describes and that we diagnose misrepresentations based on 

evolutionary consequences. The richness of our conceptual system and, in 

consequence, of our representational system (since we have already noted 

that most of our representations have linguistic correlates) is too big 

compared to the period of potential evolutionary change for this explana-

tion to actually be plausible. One could defend this type of theory when it 

comes to bees, whose communication does seem to be evolutionarily coded, 

but in the case of humans, our systems of communication are too short-

lived for the evolutionary context to be relevant. 

One could claim that the naturalized approach to representations is 

nevertheless correct also in humans and that the correct representations 

are those that realize some natural functions (or proper functions, if we 

prefer Millikan’s terminology) and that the social agreement or disagree-

ment towards concept use has no bearing on the notion of misrepresenta-

tion. However, that type of approach requires accepting one of the follow-

ing assumptions—each of which seems problematic for its own reasons. 

First of all, we can assume that linguistic concepts and cognitive rep-

resentations are not directly correlated—that concepts are not rooted in 

cognitive representations. In text, we tacitly assume that such a ground-
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ing exists, but of course a negation of such a claim can be imagined. In its 

radical version (concepts have completely no connection whatsoever to 

cognitive representations) it seems completely implausible for anyone who 

wants to respect the scientific foundations of cognitive science, including 

the empirical results of developmental psychology. However, one could 

opt for a weaker version of the negation—for example, accepting the 

grounding on the level of types (cognitive representations overall are 

grounded in cognitive representations), but refusing it on the level of 

particulars (specific concepts are not grounded in specific cognitive repre-

sentations). It’s hard to see, however, how this type of negation helps 

alleviate any of the problems mentioned above.  

A second option is to assume that the current state of language is not 

an adequate measurement of the correctness of cognitive representations. 

Such a solution requires assuming a Leibnitzian view of a perfect lan-

guage which would best suit our evolutionary needs and which would be 

the one according to which we should judge representations. However, 

metaphysical problems notwithstanding, there is a fundamental problem 

here: is such a solution actually naturalistic? How do we scientifically 

verify the correctness of representations with a postulated ideal language 

best suited for our evolutionary success? 

The third option is to go holistic—instead of evaluating particular rep-

resentations as correlated with particular concepts, we evaluate represen-

tations based on their role in an entire linguistic system. However, this 

type of holism only masks the problem—since now we are no longer suit-

ed to judge particular representations, instead, we need to evaluate an 

entire system which the given representation is tied to. This does not 

seem like a naturalistic approach at all and, moreover, seems to direct us 

towards an antirepresentational approach which we agreed not to discuss 

in the introduction. 

Besides the problems with the abovementioned three options, the solu-

tion that ignores the linguistic side of cognitive representation does not 

seem to be well reflected in empirical studies. It ignores our actual mech-

anisms of evaluating representations as erroneous in favor of an idealized 

concept of misrepresentation that is different from what is commonly 

understood as a representational error. This seems to be similar to certain 

solutions within the semantic contextualism debate which, to avoid con-

textual dependence for some propositions, gives them a literal meaning 

that comes out as false in virtually all circumstances where we would 

assert them as true and explains this assertion using a system of complex 
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implicatures. These types of solutions, while formally correct, do seem 

dubious in terms of their explanatory power. 

5. REPRESENTATIONS AND SOCIETY 

Since we have provided the arguments against a fully naturalized solu-

tion to representations, a further task remains: to provide an alternative 

solution to full naturalization. We explicitly refused the antirepresenta-

tional solution at the start, so now we are tasked with providing another 

positive option. 

Let us employ a classic tool of analytical philosophy: linguistic use 

case analysis. When do we say that someone is misrepresenting an object? 

In our case: when do we say that Athanasius is misrepresenting the para-

sol mushroom? 

We said that, similarly to Wittgenstein’s solution, the social consensus 

seems important here—Athanasius is misrepresenting the parasol mush-

room if his representation does not match what society has established as 

the proper representation. Should we, however, understand this as pure 

social consent, i.e. Athanasius has the correct representation if and only if 

society agrees that his representation is correct? 

This solution has many benefits and simplifies a lot of matters when it 

comes to the conceptual side of representations. It’s also quite antiscien-

tific—under this approach, we would have to drop all attempts to reduce 

representations to objects described by empirical sciences. However, that 

by itself is not a critical problem—after all, we consider many sociological 

phenomena to be fully emergent, and we don’t posit their reduction to 

the biological layer. This solution has another problem, however—it 

makes it impossible for us to positively resolve the “individual vs society” 

dilemma. 

Let’s consider an archetypal story of a brilliant lone scientist. In this 

story, an individual comes across a breakthrough discovery, she’s shunned 

by the majority of the scientific community, but then we discover she was 

right all along. We might try to apply this scenario for example to the 

real-life historical discussion regarding black holes (assuming that the 

discussion in this case really was of the “individual vs society” type, since 

in reality those cases rarely happen in their pure form). If the representa-

tion is decided purely by society’s consensus, there is no possible case in 

which the scientist is actually right—she will never be able to prove the 

correctness of her representation. Even a version of the scenario in which 
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she gradually convinces the community of her approach isn’t well de-

scribed in this case—since she is constantly wrong when she does the 

convincing and only starts being right once she’s actually convinced the 

majority. This description seems wrong—we would surely prefer to claim 

that the scientist was right all along and the majority had the erroneous 

representation. How can we save this intuitive description? 

The best approach seems to be to combine the functionalist approach 

towards representations, which has a very respectable intellectual history 

and has developed many useful and precise concepts, with the social ap-

proach. To do that, we only have to abandon… naturalization. We would 

still want to say that having a certain representation is realizing a certain 

function—what changes is the nature of that function. It would no longer 

be a natural function—it would instead be a socially-regulated function, 

in a manner similar to how Wittgenstein understood the way language-

meaning rules are governed by society, namely that the meaning of  

a word is what the linguistic society currently enforces as its meaning. 

In such a theory, the scientists who single-handedly maintains the ex-

istence of black holes might still be correct—as long as his representa-

tional function follows the rules that are enforced by the society. He 

might still differ with the rest of the society as to what exactly corre-

sponds to the object of those representations (in the same way that I can 

agree with others that “the fastest man in the world” means “the person 

who just got the fastest time in the men’s 100m sprint at the Olympics”, 

but due to a lack of information I could be convinced that this refers to 

Justin Gatlin (since that’s what the first reports might have indicated), 

while a later analysis of the photo-finish showed that the fastest one was 

actually Usain Bolt. This is a bit similar to how Kripke describes neces-

sary truths that are known a posteriori—from the fact that the society 

agrees (explicitly or implicitly) on the meaning postulates regarding  

a certain concept (in our solution, that would mean they agree with re-

spect to the representation function that realizes the concept), it does not 

follow that they have knowledge about all true propositions which the 

concept is part of, as some of those propositions can be only known by 

empirical research and not just by conceptual analysis. Our token scien-

tist might therefore agree with other scientists on the ostensive definition 

of black holes (e.g. “black hole” = “that which constitutes the center of 

known galaxies”), while disagreeing on the essential physical properties of 

those objects (e.g. their ability to capture light or alter the gravitational 

field).  
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If someone still remains unconvinced by the analysis above, here’s an 

alternative argument showing that the naturalistic approach to human 

representation is not plausible—one grounded in the results of cognitive 

sciences (some elements of that argumentation can already be found 

above). Let us consider what is the subject of inquiry of cognitive science 

when it comes to humans and compare it to the subject of inquiry when 

it comes to animals and other living organisms. Assuming that we can 

provide a common metaphysical description of representations in both 

cases, we have to ask how the respective representations are formed. It 

seems that while in the case of animals almost all representations are 

inbred and have an evolutionary source, that’s not the case with hu-

mans—our representations, judging e.g. from their linguistic correlates, 

seem to be contingent and have a social ground. If we aim at providing  

a common characteristic for human and non-human representations by 

using natural functions, we obtain easy empirical data, but the data will 

not necessarily be adequate for human cases (since it’s hard to provide  

a credible evolutionary explanation for humans in the same way that it’s 

possible for simpler organisms). Therefore, this solution picks data acces-

sibility from the accessibility / credibility pair, which of course is better if 

we want an easy influx of superficially convincing examples, but raises 

concerns from a methodological perspective.  

Let us come back to the solution offered by Millikan that we men-

tioned earlier and see if we can recover the naturalistic approach by as-

suming a broader approach to the concept of representation reproduction. 

Can we understand “reproduction” in a social way here and assume that 

representations are persistent if they are socially reproducible? Of course, 

we could do that, but it seems that for a naturalist that would actually 

be a pyrrhic victory. While it seems quite obvious that biology is the 

science that is suitable for describing evolutionarily stable mechanisms, it 

would be quite a stretch to assume that biology is likewise suitable for 

describing socially stable mechanisms (such as linguistic concepts, lan-

guage systems or cultural norms). We can refer to sociology, psychology 

or economics to fuel us with theories that handle those concepts, however, 

it will be hard to assume that such a solution will still be naturalistic. 

Usually, by “naturalistic” we understand a reduction to the results of 

natural science—we would either have to use an unusually broad notion 

of naturalization or assume that sociology, psychology or economics can 

be completely naturalized—which would be defending the naturalization 
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of representations by assuming an even stronger and more controversial 

claim. 

Therefore, if we want to defend the functionalist approach to represen-

tations, we shall have to modify many assumptions that usually underlie 

this approach. Most importantly, we shall have to get rid of the “natural” 

teleology and the corresponding approach to natural functions which ties 

them with evolutionary stability (an approach common in Millikan’s writ-

ing). An in-depth analysis of the argumentation provided in this paper 

allows us to go even further—we should get rid of teleology completely. 

An analysis that takes into account both representation data from human 

and non-human examples suggests that we might be better off by instead 

considering proper functions with respect to their causes instead of their 

purposes. This would also help explain the teleological approach present 

in the research on representations—in the evolutionary approach, cause 

and purpose are almost indistinguishable (it is very hard to tell “has func-

tion X because his genes survived” apart from “has function X to allow his 

genes to survive”). However, the two categories are very sharply distinct 

when it comes to human representations—we can talk more easily about 

representations that have a linguistic origin and distinguish them from 

ones which have an evolutionary origin (note that under such an ap-

proach, we do not assume that there are no evolutionarily-driven repre-

sentations in humans—again, taking into account the results of cognitive 

science, such an assumption would be quite controversial, as many sub-

personal representations, especially of the simple perceptual variety, do 

seem to have an evolutionary origin). 

6. SUM MARY 

In light of all the argumentation presented, it seems that a completely 

naturalistic approach to human representations is hard to defend. Not 

only are there good philosophical reasons to refute it, there are also 

strong methodological reasons for the refutation related to the origin of 

representations in humans. On the other hand, the hybrid social-

functional approach sketched here, which uses the origins of representa-

tional functions instead of their purposes, seems to be better suited for 

explaining the differences in representations between humans and simpler 

non-human organisms, as well as for dealing with the problem of misrep-

resentation. It remains to be seen how much of the research on function-

alism with respect to representations can be ported to such an ap-
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proach—however, I believe that such a hybrid solution would be effective 

and have the added benefit of bridging the gap between naturalistic and 

anti-naturalistic approaches to cognitive representations. 
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THE PROBLEM  OF INDEX-IN ITIALISATION  

IN  THE TEM PO-M ODAL SEM ANTICS 

 

 

S U M M A R Y : In Kripke-semantics for modal logic, the truth value of a sentence 

depends on the choice of a semantic index (e.g. world, time, or place). It means 

that application of such semantics to natural language analysis requires indication 

of an index relevant for semantic analysis. It is commonly accepted that the rele-

vant index is initialised by the context of an utterance. The idea has been rejected 

by the semanticists investigating tempo-modal languages in the framework of 

indeterminism, which generated the problem of initialization of the semantic index. 

I present the main argument of those semanticists and describe several responses 

to the initialisation problem. I finally argue that under certain metaphysical and 

semantic assumptions, one can respond to the initialisation failure in the classical 

way, even in indeterministic contexts. 

 
K E Y W O R D S : future contingents, semantics of modal languages, context depend-

ence, modal metaphysics. 

 

 

The truth value of the sentence “It is snowing in Cracow” depends on 

the time. The truth value of the sentence “There are mountains around” 

depends on the place. The truth value of the sentence “Pigs fly” depends 

on what the world is like. When modelling this phenomenon using Krip-

ke’s semantics, we postulate that the semantic value of expressions can 
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change along with the semantic index. In the semantics of temporal oper-

ators, sentences can have different values at different moments. In the 

semantics of spatial operators, sentences change their truth-value depend-

ing on the choice of spatial coordinates. In the semantics of possibility 

and necessity, sentences can assume different truth-values in different 

possible worlds. When we work with multimodal language, the semantic 

index must be rich enough and contain a parameter for the interpretation 

of each modality: a parameter of world for necessity, a parameter of time 

for temporal modalities, a parameter of place for spatial modalities etc.1 

The variability of semantic value of an expression along with  

a changing semantic index parameter is an essential feature of semantics 

for modal languages as the function of modal operators is nothing else but 

shifting an appropriate semantic index parameter. For instance, the oper-

ator of possibility changes the parameter of possible world: in a world w, 

the sentence “Pigs could fly” is true if and only if the sentence “Pigs fly” is 

true in a world w′, accessible from the world w. Similarly, temporal opera-

tors change the parameter of time: The sentence “It was snowing” is true 

at the moment t if and only if the sentence “It is snowing” is true the 

moment t′, which is earlier than the moment t. One can say that within 

the semantics for modal languages respective parameters of the semantic 

index must be “mobile”. 

The classic semantics of quantifier logic has a similar feature; in this 

case, the changeable parameter is the valuation function. Just as in modal 

semantics the semantic value of a sentence can change along with  

a change in the world, in the semantics for quantifier logic the semantic 

value of the formula P(x) can change along with the changes to the valu-

ation function (a formula can be satisfied by one valuation and not ful-

filled with another). The analogy reaches even deeper; notably, as the 

main function of modal operators is to shift the modal parameter of the 

semantic index, the main function of quantifiers is to shift (i.e. appropri-

ately change) the valuation function.  

 
1 In the entire text, I will interpret modal modifiers as sentence operators ra-

ther than quantifiers, even though this assumption is disputable (see e.g. King 

2003). I assume this rather for the simplicity of exposition than out of deep con-

viction. I need to stress, however, that the problem of index initialisation dis-

cussed in the text arises regardless of the choice of the formal representation of 

modality. 
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This is, of course, not a full analogy. On the formal level, it is easy to 

notice that the valuation function is a much more subtle tool than the 

possible world. For example, it allows for independent quantification over 

different variables while the modal operator has only one possible world 

“at its disposal”. The analogy between the semantics of modal operators 

and the semantics of quantifiers also breaks at the level of application to 

natural language analysis. Within the language of quantifier logic, there is 

a common distinction between open formulas and sentences (closed for-

mulas). The difference is that in an open formula there is least one free 

variable (beyond reach of any quantifier). Most, if not all, sentences of 

natural language that can be translated to the language of quantifier logic 

become closed formulas after translation (except for, maybe, sentences 

like “This is white” where the context does not specify what exactly is 

meant by “this”). 

The fact that the typical natural language sentences translate to 

closed formulas is consequential when we apply logic to the analysis of 

natural language sentences. An important feature of the quantifier lan-

guage semantics is that the truth-value of the closed formulas, contrary to 

the open formulas, is independent of the valuation function. This means 

that while an open formula can change its semantic value depending on 

the valuation function (it can be satisfied or not), a closed formula is 

satisfied with every valuation if it is satisfied with one (and if it is not 

satisfied with one valuation, then it is not satisfied by any other). The 

valuation function parameter is the key supporting tool, which makes the 

recursive definition of the satisfaction function possible, but on the level 

of assigning semantic values to closed formulas (i. e. sentences), its value 

ceases to be relevant. Thanks to this characteristic of closed formulas, 

semantic analysis of the sentences of natural language using the tools of 

quantifier logic is uncontroversial. Even though, for the sake of uniformity, 

the valuation function should be indicated to assess the semantic value of 

a sentence of language, we are not forced to specify which particular val-

uation function is “right” as the choice of one or another function is irrele-

vant.  

The situation changes drastically if one tries to use modal logic to ana-

lyse sentences of natural language. Elementary formulas of the language 

of modal language represent sentences like “It is raining”, “Pigs fly” and 

their truth-value depends on the choice of an appropriate semantic index 

parameter (world, time, place etc.). Hence, while the choice of valuation 

function is not relevant to the semantic values of the sentences of quanti-
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fier logic, the choice of the possible world, place or time has key influence 

on the semantic value of sentences like “It is raining”. 

Thus, anyone intending to use the formal apparatus of modal logic for 

semantic analysis of sentences of natural language is confronted with the 

question: which of the modal parameter values should be chosen to assign 

semantic values to the sentences of ordinary language? I am going to call 

this question the p r o b l em o f  i n d ex  i n i t i a l i s a t i o n . 

An answer to a problem so stated was outlined already by Kazimierz 

Twardowski, who addresses a similar issue in his paper On the So-Called 

Relative Truths: “Circumstances accompanying the utterer’s words sup-

plement what the words do not express” (Twardowski, 1900, p. 68; trans-

lation by Agnieszka Przybyła-Wilkin). In the contemporary literature, the 

“circumstances accompanying the utterer’s words” are usually called con-

text and the “supplementing” Twardowski writes about will be called 

“index initialisation” by me. Twardowski presents a very natural solution 

to the problem formulated above: if the truth-value of a sentence depends 

on the choice of the semantic index parameter, then this parameter is 

initialised by the context in which the sentence is uttered. Thus, to assign 

the truth-value to the sentence “It is raining” uttered on top of the Castle 

Hill in Lvov on the 1st of March 1900 (in our world), one should choose 

the following parameters: the Castle Hill in Lvov as place, the 1st of 

March 1900 as time, and our world as possible world. This approach was 

popularised by David Kaplan, who, in the commentary to his ground-

breaking work Demonstratives, strongly emphasised the double role of 

context: as a tool to interpret occasional expressions and as a tool to ini-

tialise the appropriate semantic index for interpretation of natural lan-

guage sentences. (see Kaplan, 1989, p. 595). It seems that, thanks to the 

support of the context of an utterance, the problem of index initialisation 

disappeared as quickly as it had appeared. However, not all philosophers 

are fully satisfied by this answer. 

PROBLEM  WITH THE W ORLD OF CONTEXT 

The answer by Twardowski-Kaplan to the problem of index initialisa-

tion has been questioned in the context of semantics created to analyse 

time-dependent possibilities (possibilities that vanish with time). A good 

tool to examine these possibilities turned out to be the model of branch-

ing histories (or worlds). This model assumes that histories can overlap in 

an initial interval and then part ways. The history that “branched” in the 
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past of a given point represents the possibility that was accessible in the 

past but vanished as the time passed. Such possibility can be exemplified 

with a history in which the citizens of Great Britain vote for remaining in 

the EU. It was available before the referendum, which took place on the 

23rd of June 2016, but the real development of the referendum annihilat-

ed that possibility. Mutual relations between histories can be pictured as 

a tree, as Figure 1 shows (the first version of the model of branching his-

tories was proposed by Arthur Prior, who was inspired by Saul Kripke’s 

suggestions, see Prior, 1966; 1967; Øhrstrøm, 2012). 

Figure 1 

 

The language in which we want to talk about temporal modalities 

contains temporal operators: “it will be the case that”, “it was the case 

that” as well as the operator of historical necessity: “it is inevitable that”. 

To interpret these modalities, we need two parameters in the semantic 

index: the parameter of time and the parameter of history (or world). 

While the initialisation of the time parameter by context does not raise 

any serious doubt, the initialisation of the history parameter turned out 

to be much more controversial. Consider a sentence (R) “the coin will 

land tails up” uttered at the moment m indicated in Figure 1. While it is 

clear which time is initialised by the context—the time at which the sen-

tence (R) is uttered—it is not clear which history (world) should be ini-

tialised. Our answer cannot be analogous—the history in which the sen-

tence (R) has been uttered—because the sentence (R) has been uttered 

both in the history h1 and in the history h2. This fact was emphasised by 

several authors: “Unlike worlds, histories overlap, so that a single speech 
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act will typically belong to many possible histories” (Belnap, Perloff, & 

Xu, 2001, p. 152), “the utterance takes place in many worlds” (MacFar-

lane, 2008, p. 85). Consider a concrete case in which a sentence is used 

[…]. There will be many worlds, in general, that represent the very same 

past and present happenings […]. The concrete episode of use takes place 

in all of them.” (MacFarlane, 2014, p. 208). 

However, if the sentence is uttered simultaneously in a number of dif-

ferent histories, it is not possible to indicate “one history in which the 

sentence has been uttered”. As a consequence, there is no simple method 

to indicate “the only history of the context”, which restores the problem 

of index initialisation. Semantics requires an indication of an index—of 

time and of history—to commence the analysis of the sentence “The coin 

will land tails up”, while metaphysics does not allow us to distinguish any 

index. 

We cannot use the argument that helped us with quantifier semantics. 

Semantics for quantifier logic also requires indication of a certain valua-

tion function to allow semantic analysis of a sentence. Obviously, no such 

function is determined by the context of the utterance. In the case of 

quantifier logic, however, it quickly turned out that it does not matter 

which function we indicate as the semantic value of a sentence (closed 

formula) is independent on the choice of valuation function. This is not 

the case here. The semantic value of the sentence “The coin will land tails 

up” is dependent on the choice of the history parameter. This sentence is 

true in the history h1 but false in the history h2. however, this value is not 

established by the context. Thus, it turns out that the application of 

modal logic semantics for analysis of natural language sentences brings 

about a fundamental difficulty, particularly if we focus—as in our exam-

ple—on future contingents. 

(POST)SEMANTICS OF THE FUTURE 

To tackle this problem, philosophers and logicians suggested a wide 

array of solutions. The first attempt was made by Arthur Prior who de-

fined the semantics he called Peircean (Prior, 1967).2 The Peircean theory 

gives up the operators of possibility and necessity while it enriches the 

temporal operators with the component of necessity. In ordinary temporal 

 
2 The name is a reference to the thought of Charles Sanders Peirce, whose 

writings inspired Prior’s solution. 
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logic, we shall say that the sentence “The coin will land tails up” is true 

at the moment m if and only if the sentence “The coin is landing tails up” 

is true at the moment m′ later then m. Peircean semantics modifies this 

condition, saying that:  

The sentence “The coin will land tails up” is true at the moment m iff i n  

e v e r y  h i s t o r y  t h e  mom en t  m  b e l o n g s  t o  the sentence “The 

coin is landing tails up” is true in a moment m′ later than m. Otherwise, it 

is false. 

Thus, the difficulty with indicating the right history is solved by 

quantifying over all histories, which results in the operator “it will be the 

case that” containing a component of necessity “it is inevitable that it will 

be the case that”. Such an alteration of meaning, however, makes the 

Peircean semantics a worse tool for the analysis of grammatical tenses. 

For instance, in Peircean semantics, before the coin toss, the sentence 

“The coin will land heads up or tails up but it will land neither heads up 

nor will it land tails up” (F(p ∨ q) ∧ ¬Fp ∧ ¬Fq) is true, even though it 

sounds like a contradiction. To see that, one just needs to look at the 

model depicted in Figure 1. The sentence F(p ∨ q) is true at the moment 

m because in each history going through m, there is a later moment in 

which it is true that the coin lands heads up or tails up (p ∨ q). At the 

same time, both sentences Fp and Fq are false at the moment m because 

the coin does not land tails up in all histories and does not land heads up 

in all of them.  

Another suggested solution to the index initialisation problem is to 

adapt Łukasiewicz’s trivalent logic to the models of branching histories.3 

In this adaptation we will say that:  

The sentence “The coin will land tails up” is true at the moment m iff in 

each history the moment m belongs to, the sentence “The coin is landing 

tails up” is true at a moment m′ later than m. 

The sentence „The coin will land tails up” is false at the moment m iff 

in each history the moment m belongs to, the sentence “The coin is landing 

tails up” is false at every moment m′ later than m. 

 
3 Interestingly, Prior introduced his tense logics—Peircean and Ockhamist—as 

an answer to Łukasiewicz’s trivalent logic, which he had earlier defended. Howev-

er, Prior’s logics were hard to accept for Łukasiewicz because the logical operators 

present in them are extensional. 
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Otherwise, the sentence “The coin will land tails up” assumes the third 

truth-value.4 

The fundamental difficulty of the trivalent semantics, however, is the 

fact that the sentence “The coin will land tails up or it will not land tails 

up” is assigned the third truth-value while we intuitively deem it true.5  

An innovation allowing us to solve this problem is Richmond Thom-

ason’s (1970; 1984) semantics of supervaluations. In this solution, Thom-

ason employs two kinds of valuations simultaneously. Basic bivalent val-

uations assign classic truth-values to sentences in relation to the mo-

ment/history pairs and supervaluations assign truth-values to sentences 

in relation to moments only, according to the pattern explained below. 

The supervaluation technique allows for introduction of (super)truth-

value holes while keeping the tautologies of classical, modal, and temporal 

logic. Thomason’s solution was inspired by the work of Bas van Fraassen 

(1966).  

Analysing Thomason’s solution, John MacFarlane (2003) identifies the 

(super)truth at a moment with truth at the context and the truth in the 

pair moment/history with truth at the index. He argues that the latter 

notion has only a supporting function. Its purpose is to clarify the earlier 

one, which should model our immediate intuitions concerning the truth-

value of sentences uttered under concrete circumstances. MacFarlane calls 

the theory connecting the notion of truth at the context with the notion 

of truth at index “postsemantics”. In this terminology, postsemantics of 

supervaluations addresses the problem of index initialisation as follows: 

The sentence “The coin will land tails up” is true at the context m iff it is 

true at every index 〈m, h〉 where m is an element of h. 

The sentence “The coin will land tails up” is false at the context m iff 

the sentence “The coin will not land tails up” is true at the context m. 

Otherwise, the sentence “The coin will land tails up” lacks the truth-

value at the context m. 

 
4 This is a definition proposed by John MacFarlane (2014, ch. 9.6); an alterna-

tive definition, preserving the extensionality of all operators, can be found in 

(Wawer, 2016, ch. 4.4). 
5 Notably, Łukasiewicz himself agrees in his On determinism that we should 

assess this sentence as true (see Łukasiewicz, 1961, p. 124). 
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If we apply this definition to the example in Figure 1, it turns out that 

at the context m the sentence “The coin will land tails up” is neither true 

nor false. At the same time, the sentence “The coin will or will not land 

tails up” is true at the context m (as it is true in every history running 

through m). 

A problematic consequence of the semantics of supervaluations is the 

fact that the classic logical connectors (like disjunction) are not exten-

sional at the context. In the above example, an alternative of two sen-

tences without truth-value is true but we can easily find examples where 

an alternative of two such sentences has no truth-value. For instance, if  

I make a wager that the coin will land tails up, the disjunction “The coin 

will land tails up or I will win the wager” has no truth-value. 

Another problem of the semantics of supervaluations, particularly 

stressed by MacFarlane, is that although the sentence “The coin will land 

tails up” has no truth-value at the context m, at the later context m′, 

which belongs to the history h1, the sentence “It was true that the coin 

would land tails up” is true. MacFarlane states that this characteristic 

leads to counterintuitive consequences. MacFarlane’s objection is very 

subtle and has changed its form over time (see MacFarlane, 2003; 2008; 

2014). Therefore, I will not delve into details here. A summary of the dis-

cussion can be found in Wawer 2016, ch. 4.6. 

MacFarlane’s answer to the problems of postsemantics of supervalua-

tions is his own assessment relativism. According to this theory, the se-

mantic value of a sentence should be established upon consideration of 

not only the context of the utterance, but also the context of assessment. 

Coming back to our example, the sentence “The coin will land tails up” 

uttered at the moment m has no truth-value when assessed in the context 

m; when assessed in a later context within history h1, it is true; when, in 

turn, assessed in a later context of the history h2, it is false. This effect is 

achieved by MacFarlane thanks to the following definition: 

The sentence “The coin will land tails up” is true at the context of utter-

ance m and the context of assessment m′ iff it is true at every index  

〈m, h〉 at which m′ is an element of h. 

The sentence “The coin will land tails up” is false at the context of ut-

terance m and the context of assessment m′ iff the sentence “The coin will 

not land tails up” is true at this pair of contexts. 
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Otherwise, the sentence “The coin will land tails up” has no truth-value 

at the context of utterance m and context of assessment m′.6 

MacFarlane makes a case for his semantics by referring to our intui-

tions on accuracy of utterances. He argues that the act of uttering “The 

coin will land tails up” is not accurate before the coin toss, while after the 

toss in which the coin has landed tails up, that very same act of uttering 

is accurate (or, more precisely, was accurate). This can be explained by 

indicating that the sentence uttered before the toss is not true in the 

earlier context of assessment but is true in the later one (assuming that 

the truth is a necessary condition of the utterance’s accuracy, i.e. truth is 

a norm of assertion). I have a number of doubts concerning both the di-

agnosis and the treatment proposed by MacFarlane. Commenting on my 

doubts, however, would take us too far away from our main point; I will 

therefore leave this comment for another occasion and move on to one 

more reaction to the problem of index initialisation. 

This reaction is presented by Belnap, Perloff and Xu (2001, ch. 6C). 

According to them, asking for the semantic value of the expression “The 

coin will land heads up” at the context m is simply nonsense. They com-

pare the expression “The coin will land heads up” to the formula “x is 

white”. Just as in the latter case there is no sense in asking whether the 

formula is fulfilled without indicating a valuation, it makes no sense in 

the earlier one to ask about the truth of the expression without indicating 

a suitable parameter of history. On the other hand, when we do indicate 

the suitable parameter, the answer is simple: “x is white” is true with 

respect to a valuation that ascribes snow to “x” and “The coin will land 

heads up” is true when we choose a history in which the coin lands heads 

up as a parameter of evaluation. Thus, we can think of the expression 

“The coin will land heads up” as a formula containing a free variable 

ranging over the set of histories. One can assume that the deep structure 

of this expression actually has a form “In the history h the coin will land 

heads up”, where h is a variable.  

What causes my uncertainty towards such an analysis is the fact that 

we do not usually think of the expression “The coin will land heads up” as 

a sentence function, which changes its value depending on the arbitrarily 

chosen value of the parameter h. We rather consider this expression  

 
6 If there are no histories containing both m and m′, the truth-value at the 

pair of contexts is reduced to supertruth at the context m. 
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a full-fledged sentence, which, after specifying the moment of utterance, is 

truth-apt. In everyday practice, we do not even get the idea that the 

sentences we utter about the future cannot be ascribed a truth-value un-

less one of the possible future histories has been indicated (not to mention 

that it is not quite clear what the indication of a possible history should 

look like).  

Moreover, while no sensible person will use the expression “x is white” 

to communicate a thought, we do not have problems using sentences like 

“The coin will land heads up” or “Next week I will be in Lublin”. One of 

the explanations of the lack of analogy is that (contrary to Belnap’s ar-

gument) in the first case, one cannot sensibly ask for the truth-value of 

these expressions, while in the other two one can do it. Belnap, Perloff 

and Xu (2001) propose an alternative explanation to this discrepancy 

(this answer is discussed in more length in [Belnap, 2002]). They believe 

that the difference on the pragmatic level—we assert sentences about 

future, we do not assert open formulas—stems from a different modal 

profile of the two cases. Even though the formula “The coin will land tails 

up” is neither true nor false, it will have been decided in the future that 

the sentence was true or it will have been decided that it was false.7 One 

can say that over time, a sentence uttered today becomes independent of 

the choice of history parameter, which makes it usable in the language 

practice. However, instead of a detailed description of Belnap’s ideas, I 

will suggest an alternative answer to the index initialisation problem. 

THE POSSIBILITY OF FUTURISM  

Contrary to the well-established opinion among the researchers of 

branching histories, I will argue that one needs not reject the natural 

interpretation of temporal operators or change logic to answer the prob-

lem of index initialisation. I believe there is no reason not to refer to the 

context as a source responsible for establishing both the time and the 

history, even considering the undetermined future. I will opt for 

Twardowski-Kaplan’s conservative answer to the index initialisation prob-

lem.  

I think that the impression that the model of branching realities pre-

cludes the traditional solution to the problem of index initialisation stems 

 
7 This observation of Belnap’s inspired MacFarlane to create the assessment 

relativism. 
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from a very special interpretation of this model, which I call “branching 

realism”. According to this interpretation, alternative histories in some 

ways resemble David Lewis’s possible worlds (see Lewis, 1986). Like Lew-

is’s worlds, all histories are equally real and metaphysically on par with 

the history (or histories) we belong to. All histories consist of concrete 

events and none of them is metaphysically distinguished. Moreover, just 

as the inhabitants of each of Lewis’s worlds can rightfully say about their 

world that it is the actual world, the inhabitants of every point in the 

tree can rightfully say that their situation is actual.  

Although the theorists of the branching model try to avoid unequivo-

cal metaphysical declarations, many of them suggest that their reflection 

is based upon such realism. One of the branching theory classic authors, 

Richmond Thomason, writes: 

Consider two different branches, b1 and b2, through t, with t < t1  b1 and 

t < t2  b2. From the standpoint of t1, b1 is actual (at least, up to t1). 

From the standpoint of t2, b2 is actual (at least, up to t2). And neither 

standpoint is correct in any absolute sense. (Thomason, 1984, p. 145, em-

phasis added) 

Then he adds: 

See D. Lewis (1970), and substitute “the actual future” for “the actual 

world” in what he says. That is the view of the thorough-going indetermin-

ist. (Thomason, 1984, p. 145, note 14, emphasis in original) 

Belnap, Perloff and Xu write in a like spirit: 

To suppose that there is one from among the histories in Our World [as 

the authors call the branching model—J. W.] that is the absolutely actual 

history is rather like purporting to stand outside Lewis’s realm of concrete 

possibilia and pointing to the one that is actual. But this is wrong in both 

cases. (Belnap, et al., 2001, p. 163)8 

Some statements by John MacFarlane also suggest modal realism:  

There is nothing in the branching model that corresponds to a car moving 

along the branching road, and nothing that corresponds to the decision the 

 
8 There is also a realistic overtone to their definition of “Our World”, which 

can be found in Belnap, et al., 2001, pp. 139–140. 
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car will have to make to go down one branch or the other. If worlds branch, 

then we branch too. (MacFarlane, 2014, p. 212, emphasis in original) 

A similar metaphysical vision transpires from the semantic objections 

by Belnap and MacFarlane cited above. The authors agree that a con-

crete utterance is a part of many different histories/worlds. Such vision is 

also suggested by Figure 1. The image shows the utterer as an inhabitant 

of a tree whose all parts are as real as the speaker and their utterance.  

It is worth noting here that the realism of branches is in some signifi-

cant ways different from David Lewis’s realism of worlds. First of all, 

histories (lines in a tree) overlap while Lewis’s worlds are disjoint. It is, 

however, noteworthy that Lewis’s attitude to overlapping worlds is not 

unequivocally critical. He believes that the worlds so understood are in 

opposition to some common-sense statements (Lewis, 1986, pp. 207–208; 

incidentally, I believe that Lewis is wrong in this respect). However, he 

also notices that realism so understood can relatively easily solve prob-

lems with which he himself had to struggle (such as the problem of trans-

world identity, see Lewis, 1986, p. 209). He also adds that  

Overlap spoils the easiest account of how worlds are unified by interrela-

tion: namely, the mereological analogue of the definition of equivalence 

classes. But alternative accounts are available […], so I presume that  

a modal realist who wished to accept overlap would not be in serious diffi-

culty on this score. (Lewis, 1986, p. 209) 

The realists advocating branches also distance themselves form some of 

Lewis’s views (see esp. Belnap, et al., 2001, ch. 7A.6) but in general, they 

have more similarities than differences. In particular, they agree that an 

absolute distinction between the actual and the possible is wrong. They 

believe that each possibility is actual from its own perspective and none 

of the modal perspectives are distinguished.  

This is, however, not the only available interpretation of the structure 

of branching possibilities. Instead of accepting Lewis’s vision of possibility, 

one can join Adams (1974), Plantinga (1976) or Kripke (1980) and accept 

some form of modal actualism. From the point of view of our problem, 

the key aspect of modal actualism is the postulate of absolute, i. e. not 

only relative, distinction between the actual and the possible. Contrary to 

what Lewis states, possible worlds are not metaphysically similar to the 

world we live in. The world which we belong to is an entity of a different 

nature—an entity that realizes one of the possibilities. With such an ap-
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proach, the branching model is a visualisation of possible temporal evolu-

tions of our world, yet these possible evolutions are fundamentally differ-

ent from the world we are part of. Importantly, while possibilities branch 

over time, the world does not have a branching structure like this. It 

evolves in a linear manner and with time, it fulfils one of the possibilities 

available. 

Figure 2  

 

When we adopt such perspective, the problem of index initialisation is 

seen in a completely different light. We cannot say, like the modal realists, 

that a specific act of uttering is a part of many possible histories. Utter-

ances do not occur in possibilities but in the concrete reality. Every such 

utterance is a part of only one world (“our” world). This situation is visu-

alised by Figure 2. The line on the right shows all the events that have 

occurred, are occurring and will occur in our world while the tree on the 

left shows all possible courses of events. One of the possible courses of 

events is, of course, the way events have actually turned out and will turn 

out (the world evolves in a “consistent” manner, realizing only one of the 

possibilities). I marked this possibility with a bold line. 

Such take on the relation between the actual and the possible allows 

for a completely different answer to the problem of index initialisation. 

Contrary to what Belnap and MacFarlane say, the utterance of the sen-

tence “The coin will land tails up” does not take place in many different 

histories/worlds. The utterance occurs in exactly one world, which allows 

us to return to the standard answer to the index initialisation problem: 

the world of context is the world in which the utterance takes place. More 

precisely, the world/history indicated by the context is the only possible 

history accurately representing the way the world was, is and will be. 
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Since the world evolves in exactly one of the possible ways, it is guaran-

teed that there is only one history that accurately represents this evolu-

tion. This is the history that should be chosen as the history of context. 

On the intuitive level this comes down to the trivial observation that the 

sentence “The coin will land tails up” is true if and only if the coin actual-

ly will land tails up in the future, which can be more formally presented 

in a form of a statement I call “futurism”: 

The sentence “The coin will land tails up” is true in the context c iff it is 

true at the moment of context mc and at the history of context hc. 

The moment of context is by default the present moment and the his-

tory of context is by default the actual history. One can, therefore, an-

swer to the problem of index initialisation in the conservative style of 

Twardowski, even if the sentence analysed is a future contingent. Howev-

er, in order to do this, we need to refer to the metaphysical principle of 

actualism: that the world which we belong to (and in which we utter 

sentences) is metaphysically of a different nature from the ways the world 

can evolve. When adopting such assumption, we can defend our argument 

against the objections of modal realists, raised against the notion of the 

world of context. 

I achieved the connection between the metaphysics of actualism and 

semantics through observation that acts of uttering are a part of one 

specific world, which differs in nature from the possible evolutions. One 

can, however, object to this statement as follows: even the actualists, who 

distinguish metaphysically between actuality and potentiality, often ac-

cept a paraphrase of modal sentences in categories of possible worlds. 

Moreover, they will not have a problem accepting the statement that 

some utterances that never have taken place and never will take place, 

could have taken place. For instance, Senator Elizabeth Warren could 

have backed Bernie Sanders in the 2016 Democratic Party Presidential 

Primaries, yet she did not. Thus, even actualists are eager to admit that 

there is a possible world in which Elizabeth Warren utters the sentence “I 

shall do everything for Bernie Sanders to become the next president of 

the USA.” Therefore, contrary to what I stated above, even within actual-

ism, utterances are present not only in our world, but also in the possible 

worlds. If this, in turn, is true, our world has not the exclusive right to 
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utterances and so it cannot be used to solve the semantic index initialisa-

tion problem.9 

One can answer a difficulty put that way in one of two manners: elit-

ist or egalitarian. In the earlier strategy, we focus on the special status of 

our world and negate the statement that any utterances occur in any 

other possible worlds (this is the strategy I suggest in [Wawer, 2014]). 

The statement that there is a world in which Senator Warren says any-

thing is, after all, just a useful paraphrase, or metaphor. What is para-

phrased depends on the specific version of modal actualism. The state-

ment that there is a possible world in which Elizabeth Warren says “A” 

could be, to name a few examples, be understood as follows: 

- Elizabeth Warren could have said “A”. 

- E.W. had a disposition to say “A”. 

- There is an (abstract) non-contradictory set of propositions that 

represents E. W. saying “A”. 

- There is an (abstract) maximal state of affairs, part of which is  

E. W. saying “A”. 

- There is an (abstract) way the world could have been within which 

E. W. says “A”. 

What is important to us is that none of these paraphrases suggest that 

besides specific acts of utterance, which take place in our world, there are 

similar acts occurring in other worlds. For instance, the proposition that 

E. W. utters the sentence “A” is an entity radically different in its nature 

from a real utterance of the real E. W. Therefore, we need not be trou-

bled with the acts of utterance taking place in other worlds as, literally 

speaking, such acts do not exist (there are only states of affairs or propo-

sitions representing such acts, dispositions to such acts, possibilities of 

such acts occurring etc.). Our task was to indicate a mechanism that 

connects a specific utterance with a suitable semantic index relevant for 

the semantic interpretation of this utterance. Since utterances take place 

only in one world, we have a full guarantee that the context of the utter-

ance will establish the appropriate semantic index (actual history and 

present time). An elitist actualist of this type must, of course, face the 

obvious observation that E.W. c o u l d  hav e  said “Bernie Sanders will be 

 
9 I thank an anonymous reviewer for raising this objection.  
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the next president”, or even that E. W. c o u l d  ha v e  t r u l y  said “Bernie 

Sanders will be the next president”. However, the analysis of the sentence 

“E. W. could have truly said ‘Bernie Sanders will be the next president’” 

does not require us to assume that in some other place, E. W. really ut-

ters the sentence “Bernie Sanders will be the next president” (a proposed 

analysis of reports of utterances embedded within reach of modal opera-

tors can be found in [Wawer, 2016, ch. 6.3.6]).  

One can also propose a more egalitarian, conciliatory line of answer to 

the difficulty outlined above. In this strategy, we approach the possible 

utterances more sympathetically and agree that every such utterance can 

be treated as if it was factual—or, more precisely, only the factual utter-

ances take place but one can assume, or imagine, that a given utterance is 

factual and formulate a problem analogous to our index initialisation 

problem: Assuming that Elizabeth Warren indeed says “Bernie Sanders 

will be the next president”, which of the histories running through this 

possible utterance should be used for the semantic analysis of her utter-

ance? The problem might seem very acute as I have argued earlier that it 

is the particular, factual world and its turn of events that establishes the 

possible history relevant for the process of semantic analysis and in our 

example I explicitly assume that E. W.’s utterance is no t   

a part of this world (E. W. never actually uttered these words). Thus, the 

possible situation of utterance “lacks a world” that could help us establish 

the appropriate semantic index.  

I believe that a difficulty of this type stems from a misunderstanding 

whose root is a kind of doublethink: on one hand, we treat the utterance 

of E. W. as if it was factual while on the other hand, we stress that it is 

merely possible. This kind of vision is indeed problematic and leads to 

controversial conclusions.10 Nevertheless, an actualist need not, or even 

should not adopt it. If we prefer the egalitarian approach to the branch-

ing model, we decide to assume that every possible situation can be the 

context of utterance. Still, in this case we should remember that when 

treating a given possible situation as the context, we must also assume 

that this situation is actual and, as such, it is a part of the actual course 

of events, which realizes one of the temporal possibilities available at the 

moment of utterance. If it is so, then the semantic index can be initialised 

 
10 Notably, this very kind of doublethink is spread among the critics of actual-

ism in the context of the branching model, such as Nuel Belnap or John MacFar-

lane. 
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in the exact same way as we initialise it in the case of actual utterances. 

The time of context is the present time of the utterance and the history 

of context is the history that will be satisfied by the course of events con-

taining the considered utterance. Hence, whether we adopt the elitist or 

the egalitarian attitude to the possible utterances, we reach a conclusion 

that when analysing semantically the utterance used in the given context, 

we must treat it as a part of the actual world and therefore, we can refer 

to this world to establish the appropriate semantic index.  

It is worth noting that accepting Kaplan’s traditional solution to the 

index initialisation problem, we take one side of the conflict going back to 

the ancient times about the truth-value of the future contingents. In the 

(post)semantics presented above—futurism—every sentence has exactly 

one of the two truth-values and future contingents can be true. I do not 

want to say that an actualist is forced to adopt this solution; they can 

decide to adopt one of the (post)semantics presented earlier and refuse to 

use the notion of the world of context instead. However, I believe this is  

a decision of a semantic, and not metaphysical, nature.  

One should mind that when choosing one of the histories as the histo-

ry of context, I indicated the history that “accurately represents the way 

the world was, is and will be”. Consequently, in order to establish the 

truth-value of the sentence uttered in the given context, I implicitly re-

ferred to the past and future states of the world. Actualism guarantees 

that at every moment of the time, there is (was, will be) one such state. 

However, to use this state to our needs, we have to assume that we can 

refer to it when establishing the truth-value of an expression. I call this 

assumption “semantic transtemporalism”. According to this statement, the 

truth-value of the sentence “At the time t, φ” assessed at the time t′ de-

pends on the way the world is (was, will be) at the time t, not the way it 

is at the time t′.  

I believe the subject of the famous conflict between Kotarbiński (1913) 

and Leśniewski (1913) was in fact the question of justification of 

transtemporalism. Kotarbiński rejects this idea while Leśniewski defends 

it. Kotarbiński seems to have been swayed by Leśniewski’s arguments but 

his way of thinking about the relation between truth and time was con-

tinued by Łukasiewicz.11 Łukasiewicz persistently stood by localism, argu-

ing that in order for the statement “At the time t′ the coin lands tails up” 

 
11 It is not certain if Kotarbiński inspired Łukasiewicz in this matter or just on 

the contrary (see Woleński, 1990). 



 THE PROBLEM OF INDEX-INITIALISATION… 39 

 

to be true at the time t, there must be conditions at the time  

t that decide that the coin lands tails up at the time t′. If t′ is later than t, 

these conditions may be e. g. the angle or the force of the coin toss, as 

long as they combined guarantee the coin’s landing tails up. If t′ is earlier 

than t, the conditions are the traces left by the coin landing tails up (e. g. 

memories). If at the time t there are no conditions that guarantee the 

truth or falsity of the given sentence, it cannot assume any of the classic 

truth-values. This view is expressed by Łukasiewicz as early as 1922 (see 

Łukasiewicz, 1961, p. 122) and repeated by him in an almost unchanged 

form not long before his death (see Łukasiewicz, 1957, pp. 154–155). 

This is, however, not the only way of thinking on the relations be-

tween truth and time. One can argue, in accordance with Leśniewski, that 

the truth-value of the sentence “At the moment t′ the coin lands tails up” 

at the moment t should depend on what the state of the coin was or will 

be at the moment t′ and not on the state the coin is in at the moment t. 

Not wanting to delve into the discussion of advantages and disadvantages 

of the two approaches here, I will only stress that I do not think 

transtemporalism should be in the losing position here.  

Summing up, the traditional solution to the index initialisation prob-

lem is not excluded even for the tempo-modal semantics modelling inde-

terministic situations. However, a condition of applying this solution is to 

assume the metaphysical actualism and semantic transtemporalism. These 

are real commitments that one should be aware of. Nevertheless, I believe 

that when classical logic and a natural analysis of tempo-modal language 

is at stake, adopting these views is not too high a price. 
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ABOUT THE BASIS FOR THE DEBATE  

OF COUNTERPOSSIBLES 

 

 

S U M M A R Y : According to the most popular (so-called “orthodox”) theories, coun-

terfactuals with impossible antecedents are vacuously true. Critiques of this view 

argue that contrary to this, we tend to consider only some of them true and oth-

ers to be false. In his recent paper (Counterpossibles) Timothy Williamson has 

ingeniously explained the motivations for the orthodox view and argued that 

although there are some heuristic reasons that may suggest the plausibility of the 

unorthodox view, they are fallible. The most important of Williamson’s arguments 

is that the unorthodox interpretation is inconsistent with the heuristic assumption 

that supposedly motivates this very view. The aim of this paper is to consider 

Williamson’s critique and to support the unorthodox approach towards counter-

possibles. In order to do so, we argue in favor of the modified version of the heu-

ristic assumption. 
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The subject of this paper is the debate over truth-values of counter-

possibles, i.e., subjunctive conditionals, the antecedents of which express 
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impossibility.1 On one side of this debate are advocates of so-called or-

thodoxy, which tracks back to the works of Robert Stalanker (1968) and 

David Lewis (1973), and which nowadays is defended by Timothy Wil-

liamson (2007; 2016b; 2018). Orthodoxy has it that every counterpossible 

is true. On the opposite side, there are advocates of unorthodoxy, who 

argue in favor of the thesis that some counterpossibles are false (Yagisawa, 

1988; Nolan, 1997; Priest, 2009; Brogaard & Salerno, 2013). 

The main aim of this paper is to reply to two of orthodoxy’s argu-

ments against motivations for the unorthodox approach (Williamson, 

2016b; 2018). The first one has it that intuitions that underpin unortho-

doxy are in tension with commonly accepted rules of counterfactuals. The 

second one aims to highlight a misunderstanding of the orthodox ap-

proach. Being an advocate of orthodoxy, Williamson argues that this 

misunderstanding results in an implausible characterization of this ap-

proach. Both arguments are meant to provide reasons for which unortho-

doxy may be considered an implausible view. 

I aim to look closely at those charges and to refute them. Firstly, I am 

going to argue in favor of the consistency of the unorthodoxy and the 

main rules of counterfactuals. Further, the question that Williamson con-

siders to be based on a misunderstanding of orthodoxy will be revised.  

I believe that this will allow the justification of unorthodoxy.  

Two aspects of the debate should be stressed right away. The subject 

of the debate is the truth-value of counterpossibles. Some critics of ortho-

doxy suggest that the vacuous truth of counterpossibles entails a lack of 

their s eman t i c  i n f o rma t i v e n e s s  or that their me an i ng  is inde-

pendent of the consequent (Brogaard & Salerno, 2013). It is debatable 

whether orthodoxy entails this. This will not be a subject of this paper, 

for I am going to focus merely on the explicit thesis of orthodoxy, accord-

ing to which every counterpossibles is vacuously true.  

Secondly, my aim is not to argue in favor of either the inconsistency of 

orthodoxy or its implausibility due to the thesis of the vacuous truth of 

every counterpossible. It should be noted that some advocates of this 

approach try to provide an alternative explanation of the common intui-

tion that some counterpossible are false. This is often done by moving the 

burden of the problem from semantics into pragmatics. Accordingly, it is 

claimed that while every counterpossible is vacuously true, there are good 

 
1 This material is based on the work supported by National Science Centre 

(NCN), Poland (Grant No.2016/20/S/HS1/00125).  
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pragmatic reasons for which we do assert some of them and do not assert 

others (Emery & Hill, 2017). While this is an exciting proposal and focus-

ing on the pragmatic aspects of counterfactuals has a long tradition, 2 

analysis of this goes beyond the aim of this paper. This is because more 

than the efficiency of the orthodox approach, I am interested in arguing 

in favor of the thesis that unorthodoxy is a consistent, well-motivated, 

alternative to orthodoxy, worth further development. After all, the lack of 

consistency is what unorthodoxy has been charged with by Timothy Wil-

liamson. 

In order to do so, I shall begin with a rough characteristic of what 

counterfactuals are and what are the motivations that underpin both the 

orthodoxy and the unorthodoxy. After this, I shall focus on the argument 

that is meant to prove the inconsistency of unorthodoxy. Further, the 

question of a misunderstanding of orthodoxy will be reconsidered. The 

last part is devoted to the methodological aspect of the debate. 

COUNTERFACTUALS 

Counterfactuals are complex propositions that are often expressed as 

“If it had been the case that A, then it would be the case that C” (A>C), 

where A (antecedent), and C (consequent) are propositions, e.g.: 

(1) “If the match had been scratched, it would have lighted.” 

(2) “If there had been no email controversy, Hillary Clinton would 

have won the election.” 

(3) “If Christopher Columbus had reached the place he was planning 

to reach in 1492, he would have arrived in Japan.” 

By the use of this kind of proposition, we indicate an essential connec-

tion between what is expressed by the antecedent and the consequent. 

We refer to them both in everyday life as well as in scientific discourses. 

They are considered to be an inherent aspect of gaining and transferring 

knowledge, expressing our beliefs, opinions, and attitudes, and stimulate 

our behavior (Edgington, 1995; Bennett, 2003; Williamson, 2016a).  

It seems that one of the reasons for which we consider counterfactuals 

to have such importance for our intellectual life is that we ascribe them 

different truth-values. While we tend to consider (1) true, (2) is false. 

 
2 See the works of Grice (1975) and Jackson (1988). 
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Even though the claim that counterfactuals have different truth-values is 

close to banality, providing the proper truth criteria for such complex 

expressions is hardly a trivial endeavor. It should be noted that this is not 

the question of whether Columbus was planning to arrive in Japan, or of 

whether the email controversy was the only reason for which Clinton lost 

to Trump. While these may have some importance for the analysis of 

counterfactuals in general, the main issue is to provide a semantic criteri-

on of truth-value for complex propositions such as (1–3). 

POSSIBLE W ORLDS SEMANTICS 

The most popular analysis of counterfactuals is the one provided in 

terms of possible worlds semantics. This has it that sentences that con-

tain modal operators of possibility—“it is possible that p” (or “it could be 

the case that p”)—should be understood as ones that state that there is a 

possible world where p is the case. It is claimed that each sentence of the 

form “it is possible that p” is true if and only if there is a world (actual or 

merely possible) where p is the case. Thus, “Christopher Columbus could 

have reached Japan in 1492” should be interpreted as one which states 

that there is a possible world, where Christopher Columbus did reach 

Japan in 1492. Likewise, sentences that contain a modal operator of ne-

cessity, e.g., “It is necessary that p” (or “It has to be the case that p”) are 

true if and only if in every possible world it is the case that p. Thus, “It is 

necessary that 2+2=4” is true because in every possible world, it is the 

case that 2+2=4. If it had been otherwise, i.e., if there had been a possi-

ble world where 2+2 does not equal 4, then we would have to admit the 

truth of “It is possible that 2+2 does not equal 4.” 

Possible worlds semantics, by providing an analysis of modality, be-

came an attractive model for the analysis of counterfactuals. Based on 

this, the two very similar approaches of Robert Stalnaker (1968) and 

David Lewis (1973) have been proposed. According to these, A>C is true 

in the actual world if and only if either: 

(i) there is no possible world, where A is the case 

or 
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(ii) there is a possible world w1, where A and C are the case, and this 

world is more similar to the actual world than any possible world 

w2, where A is the case, but C is not. 

In virtue of the above, “If the match had been scratched, it would 

have lighted” is true because there is a world where the match is 

scratched and where it lights, and this world is more similar to the actual 

world than one where even though the match has been scratched, it does 

not light. 

While possible worlds semantic is the most popular analysis of coun-

terfactuals, it is not problem-free. One of these problems is somehow simi-

lar to that of paradoxes of material implication. As condition (i) has it, 

every counterfactual, which contain an impossible antecedent, is true. 

Thus, each of the below is true: 

(4) “If there had been a round square, geometry would be different to 

what it actually is.” 

(5) “If there had been a round square, geometry would be the same as 

it actually is.” 

(6) “If it had been raining and not raining at the same time, some 

contradictions would be true.” 

(7) “(Even) if it had been raining and not raining at the same time, 

no contradictions would be true.” 

(8) “If whales were fish, they would have gills.” 

(9) “If whales were fish, they would not have gills.” 

Due to the impossibility of the antecedents (mathematical, logical, and 

metaphysical respectively) of (4–9), each of these is true.3 After all, each 

of them satisfies the condition (i). Since the truth of (4–9) does not de-

pend upon consequences, they are considered to be vacuously true. This 

means that these are true regardless of the consequents. 

 
3 This shows that impossibility is not restricted to merely logical impossibility, 

which is usually of the form of the conjunction of two opposite propositions, p and 

¬p (e.g., antecedents of (6) and (7)). It is claimed that an impossible state of 

affairs is a state that is realized in no possible worlds. Thus, if one admits that 

beyond logical truths the truths of mathematics and metaphysics are necessary, 

the antecedents of (4), (5), (7), and (9) also express impossibilities. 
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The above consequence seems to go against common intuitions. While 

we tend to consider (4), (6), and (8) true, they are not vacuously so. This 

partly depends upon the fact that we consider (5), (7), and (9) false. Af-

ter all, the fact that no square is round is grounded in the laws of geome-

try, the truth of propositions of the form p and ¬p is a contradiction, and 

one of the essential features of fish is that they have gills. Because of this, 

we are justified in expecting that an adequate analysis of counterfactuals 

will take these data into consideration and provide analysis, which would 

explain the falseness of expressions such as (5).  

Philosophers who find this convincing argue in favor of a modification 

of possible worlds semantic analysis which is based on extending the do-

main of worlds to include impossible worlds, i.e., worlds where what is 

impossible in the actual world, is true. In virtue of this, some worlds con-

tain round squares, true contradictions or whales that are fish. This re-

sults in a modified truth criterion of counterfactuals, which has it that 

A>C is true if and only if there is a possible or impossible world w1, 

where A and C are the case, and this world is more similar to the actual 

world than any possible world w2, where A is the case, but C is not the 

case. 

While this modification does justice to common intuitions about the 

falseness of some counterpossibles, it raises questions about the logical 

and metaphysical nature of worlds.4 Even though this is a highly interest-

ing issue, the plausibility of considering this is based on the assumption 

that the mentioned modification is justified in the first place. This as-

sumption, however, is often questioned (Lewis, 1986, p. 7; Stalnaker, 

1996). Among a number of arguments against belief in an impossible 

world, one aims to show that unorthodoxy on counterpossibles results in 

inconsistency (Williamson, 2018). Before going into details of this charge, 

I shall explicate the orthodox view. 

ORTHODOXY 

The starting point of orthodoxy—as Williamson argues—is the fact that 

in virtue of intensional semantics every counterfactual with an impossible 

antecedent has the same intension, and hence the same truth-value.5  

 
4 See, e.g., (Berto, 2013). 
5 This is because the orthodoxy’s domain of worlds does not include 

impossible worlds, which could represent various impossibilities.  
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This does not yet prejudge the question of whether each and every 

counterpossible is true or false. The additional assumption is that every 

counterfactual the consequent of which is a mere repetition of the ante-

cedent (e.g., A>A) is true. This should not be controversial, for if there is 

a proposition of which we can be sure of its truth, A>A seems to be the 

right candidate. Since this is true regardless of whether “A” expresses 

possibility or impossibility, the mentioned assumption applied to counter-

factuals of possible antecedent (“If Christopher Columbus had reached the 

place he was planning to reach in 1492, he would have reached the place 

he was planning to reach in 1492”) as well as to counterpossible (“If there 

had been a round square, there would have been a round square”). Thus, 

if one agrees that each counterpossible has the same intension, and that 

each “A>A” is true, every counterpossible is true (Williamson, 2018, p. 1). 

An advocate of unorthodoxy could argue that one of the reasons for 

which we assume A>A to be always true is that the negation of this, i.e., 

A>¬A is always false. After all, even if one has no knowledge with re-

spect to A, one may assume that ¬A is inconsistent with it and that it is 

impossible for both A and ¬A to be true. Thus, the reason for a belief in 

the necessary truth of A>A (“If Christopher Columbus had reached the 

place he was planning to reach in 1492, he would have reached the place 

he was planning to reach in 1492”, “If there had been a round square, 

there would have been a round square”) is indirectly a reason for a belief 

in the falseness of A>¬A (“If Christopher Columbus had reached the 

place he was planning to reach in 1492, he would not have reached the 

place he was planning to reach in 1492”, “If there had been a round 

square, there would have been no round square”). This may suggest that 

the justification for the truth of A>A is also a justification for the false-

ness of A>¬A. 

Contrary to the above, advocates of orthodoxy argue in favor of the 

thesis which has it that if A expresses impossibility, both “A>A” and 

“A>¬A” are true. As Williamson argues, this is partly grounded in the 

commonly accepted principle that counterfactuals distribute over con-

junction in the consequent: ((A>C) ⋀ (A>B))≡(A>(C ⋀ B)). In vir-

tue of this principle, the truth of A>A and A>¬A result in the truth of 

A>(A ⋀ ¬A). While acceptance of this may raise some doubts, this mere-

ly shows that if the consequent of a given A is a contradiction, and if no 

contradiction is possible, the mentioned antecedent is not possible either 

(Williamson, 2018, p. 3). Thus, the acceptance of the truth of A>A and 

A>¬A is grounded in the impossibility of A. In other cases, i.e., those 
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where A is possible, the truth A>A entails the falseness of A>¬A (Stal-

naker, 1968, p. 106). 

The reasoning mentioned above is a justification for a belief in the 

vacuous truth of counterpossibles rather than criticism of unorthodoxy. 

Since this heavily relies on the assumption of the nonexistence of impossi-

ble worlds, the extension of the worlds’ domain by introducing impossible 

worlds, would result in the situation where we could choose between two 

alternatives—orthodoxy and unorthodoxy. This would be a real choice 

only if both alternatives were consistent approaches. In this respect, Wil-

liamson charged unorthodoxy with being inconsistent. The mentioned 

inconsistency is meant to be grounded in the motivation for the belief in 

non-vacuous counterpossibles. This is the subject of the following section. 

M ISLEADING H EURISTICS 

Considering the popularity of the orthodoxy, one may raise a question 

about the explanation of the common intuition which has it that some 

counterpossibles are false. Williamson sees the source of this intuition in 

what he calls heuristics, which is reflected in one of two expressions: 

(HCC)  Given that C is inconsistent with D, treat A>C as inconsistent 

with A>D. 

or 

(HCC*) If you accept one of A>C and a A>¬C, reject the other. (Wil-

liamson, 2018, p. 8) 

As Williamson argues, the belief in the plausibility of the above is 

what is meant to justify the unorthodoxy on counterpossibles. Thus, in 

virtue of either (HCC) or (HCC*), the truth of A>A should result in the 

falseness of A>¬A. This—advocates of unorthodoxy seem to claim—gives 

an accurate picture of the way in which we use counterfactuals with pos-

sible as well as those with impossible antecedents.  

Contrary to this, it is argued that while in many cases, the use of the 

above-mentioned heuristics is justified, they do not apply unrestrictedly. 

A counterexample to this is a counterfactual with an impossible anteced-

ent. As has been shown previously, an advocate of orthodoxy argues that 

in such cases, both A>C and A>¬C are true. Thus (HCC) and (HCC*) 

apply to only those cases where the antecedent expresses possibility (Wil-
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liamson, 2018, p. 9). In other cases, to rely on the heuristics results in  

a consequence that is inconsistent with the orthodoxy, i.e., the claim that 

some counterpossibles are false.  

The above observation focuses on the relation between the orthodoxy 

and heuristics and shows why—in virtue of the former—the unrestricted 

acceptance of the latter is implausible. This, however, allows for an alter-

native interpretation. Namely, one according to which the thesis of ortho-

doxy contradicts the common phenomena expressed by (HCC) or (HCC*), 

so one should lean towards unorthodoxy. This would be justified if advo-

cates of unorthodoxy could apply heuristics in an unrestricted way. As 

Williamson argues, this is not the case, which is meant to be shown by 

two counterpossibles: 

a) (A ⋀ ¬A)>A 

b) (A ⋀ ¬A)> ¬A 

In virtue of (HCC) one should admit that the truth of (a) results in 

the falseness of (b). This, however, is problematic for at least three rea-

sons. First of all, this would require rejecting one of the commonly ac-

cepted assumptions about counterfactuals, which has it that if an ante-

cedent is a conjunction, then each conjunct of this is a consequent of this 

counterfactual, i.e. (A ⋀ B)>A and (A ⋀ B)>B. Secondly, acceptance of 

only one of (a) and (b) contradicts the principle of counterfactual distri-

bution over conjunction in the consequent. After all, since both (a) and (b) 

have the same antecedent, one should conclude (c): (A ⋀ ¬A)>(A ⋀ ¬A). 

Finally, since (c) is an example of a counterfactual of the form A>A, the 

falseness of (c) goes against the initial assumption about the truth of 

every counterfactual of the form A>A. Thus, the consequences of the 

heuristics which meant to justify the unorthodoxy are incompatible with 

the general assumptions about counterfactuals (Williamson, 2018, p. 8). 

In virtue of the above, an advocate of the unorthodoxy finds herself in 

a highly problematic situation. In order to defend this approach, one 

would have either to give up all of the three mentioned assumptions 

about counterfactuals or to modify the heuristics. I am going to argue in 

favor of the second option. Before doing so, however, it is worth mention-

ing what Williamson considers to be the misunderstanding of orthodoxy, 

i.e., the claim that an advocate of orthodoxy believes that the conse-

quents of a counterpossible play no role when it comes to determining the 
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truth-value of a given counterpossible. This charge has been formulated 

by Beritt Brogaard and Joe Salerno: 

Counterpossibles are trivial on the standard account. By “trivial”, we mean 

vacuously true and semantically uninformative. Counterpossibles are vacu-

ously true in that they are always true; an impossibility counterfactually 

implies anything you like. And relatedly, they are uninformative in the 

sense that the consequent of a counterpossible makes no contribution to 

the truth-value, meaning or our understanding of the whole. (Brogaard  

& Salerno, 2013, p. 642) 

The problem that Brogaard and Salerno pointed out is often consid-

ered an indirect motivation for rejecting the orthodoxy in favor of the 

unorthodoxy. According to Williamson, the charge is based on a misin-

terpretation of the first of these (Williamson, 2018, p. 4–5). 

A  CONSEQUENT OF A COUNTERPOSSIBLE 

Williamson’s argument is of the form of a reduction ad absurdum, and 

the crucial part of it is an analogy with other types of vacuously true 

counterfactuals, i.e., counterfactuals with necessarily true consequents. In 

virtue of this, it is claimed that if advocates of the orthodoxy claimed 

that the consequent of a counterpossible played no role in its truth-value, 

then the vacuous truth of a counterfactual with a necessarily true conse-

quent would be independent of its antecedent. This would allow for  

a particular type of counterfactual, namely one which has an impossible 

antecedent and a necessarily true consequent: 

(10) “If 6 were prime, 35 would be composite” (Williamson, 2018, p. 5). 

Following the criticism of the orthodoxy—Williamson claims—one 

would have to admit that both the antecedent and the consequent of (10) 

have no contribution to the truth-value of this counterfactual. This, how-

ever, is implausible for without an antecedent and a consequent what is 

left is a bare form of the counterfactual sentence, which cannot give  

a truth-value on its own. If this is the consequence of the argument, then 

it is misleading for none of the advocates of orthodoxy would like to hold 

such a ridicules thesis (Williamson, 2018, p. 5). 

If Williamson is right, the critique of orthodoxy should either argue 

that the mentioned “ridiculous thesis” indeed is a consequence of the or-
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thodoxy or point out that this thesis is not a consequence of Brogaard 

and Salerno’s charge. Choosing the latter option, I am going to argue that 

there is no need to believe that the mentioned charge results in ascribing 

to the orthodoxy the view that (10) is true in virtue of being a counter-

factual.  

What is key for Williamson’s analysis is the question of what is the 

bare form of the counterfactual sentence. If we assume that the bare form 

of disjunction is the expression of the form p∨q, then the bare form of the 

counterfactual sentence is A>C. The mere form does not allow for the 

determination of the truth-value of a counterfactual, which is reflected in 

the fact that philosophers of conditionals provide additional truth-

conditions.6 Likewise, the bare form of disjunction does not determine the 

truth value of p∨q. While it is difficult to agree that the mere structure of 

(10) determines the truth value of it, one may question whether this is  

a consequence of the charge of Brogaard and Salerno. It seems that there 

are two reasons to believe that the claim that the consequent of counter-

possibles does not contribute to the truth-value of the whole does not 

entail the thesis that (10) is true only in virtue of being a counterfactual. 

The first reason is that if the claim mentioned above had been a con-

sequent of Brogaard and Salerno’s charge, the charge would have it that, 

in virtue of the orthodoxy, counterpossibles such as (8*) “If whales were 

fish, C” are vacuously true. This, however, would change the original 

subject of the charge, for this would be a problem of the vacuous truth of 

not well-formed formulas. This is due to the assumption that the counter-

factual is a logical connective of two sentential arguments (A and C). 

Thus, in order to estimate the truth-value of it, both arguments should be 

satisfied by sentences. (8*) does not satisfy this for it contains one sen-

tence and one sentential variable.7  

While the belief in the truth of (8*) is controversial, this is not the 

aim of the original criticism of the orthodoxy. The aim is the thesis that 

regardless of what C is substituted by (8*) will be vacuously true. In this 

 
6 Williamson did not write explicitly what he means by “the bare form” of (10). 

Thus, one may raise doubts about whether the proposed “A>C” is actually the 

bare form of a counterfactual, for while this may represent the structure of (10), 

this does not reflect the modal status of its antecedent and the consequent.  
7 Based on the analogy to the bare form of disjunction, for every disjunction, 

where one of the disjuncts is “2+2=4” is true, this does not mean that “2+2=4 or 

p” (or “2+2=4 ∨ p”) is true. After all, these are not well-formed formulas. 
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sense, a consequent of a counterpossible makes no contribution to the 

truth-value of the whole. Thus, one may question whether the conse-

quence of Brogaard and Salerno’s charge is the thesis that orthodoxy has 

it that what makes (10) true is the fact that is has the structure of A>C.  

Secondly, if one asks an advocate of orthodoxy for motivations to be-

lieve in the vacuous truth of (4–9), she would say that this is so due to 

the impossibility of their antecedents. If we asked what makes the sen-

tences “Even if Christopher Columbus had reached the place he was 

planning to reach in 1492, 36 would be composite” true, she would say 

that this is due to the necessary truth of the consequent. Both of these 

conditions—in virtue of orthodoxy—are sufficient to believe in the vacu-

ous truth of the mentioned counterfactuals. Likewise, the truth of (10) is 

not grounded in the fact that the antecedent is impossible, and the fact 

that the consequent is necessarily true. What—in virtue of orthodoxy—

makes (10) true is rather the fact that this satisfies a disjunction of condi-

tions: a counterfactual is true whenever its antecedent is impossible, or 

the consequent is necessarily true. In the first case, the consequent plays 

no role in evaluation, in the second, the antecedent does not contribute to 

the truth-value.  

This shows that contrary to what Williamson suggests, the criticism of 

orthodoxy does not have to entail the above-mentioned ridiculous thesis 

that (10) is true because of its structure. Nevertheless, the acceptance of 

orthodoxy results in the consequence that the impossibility of the ante-

cedent determines the truth-value of the counterfactual. Thus, the conse-

quent of a counterpossible (its meaning, modal status, or truth-value) 

makes no contribution to the truth-value of the whole expression. 

H EURISTICS MODIFIED 

The above allows us to move back to the question of heuristics. Timo-

thy Williamson argues that the unrestricted acceptance of these is equally 

problematic for an advocate of orthodoxy as it is for the critiques of this 

approach. Thus, one should not consider them as a plausible motivation 

for rejecting orthodoxy in favor of orthodoxy. This is so due to the in-

compatibility of heuristics and the above-mentioned three principles that 

were meant to regulate the use of counterfactuals in general. In virtue of 

this, it is worth considering whether it is possible to provide such an al-

ternative formulation of heuristics that on the one hand would justify the 

intuitions of different truth-values of counterfactuals (of possible or im-
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possible antecedents), and on the other hand would not be in tension with 

the truth of (a) and (b). 

It seems that the source of the incompatibility of (HCC*) and the 

truth of (a) and (b) is that while the consequents of (a) and (b) are in-

compatible with each other, each of them is compatible with the anteced-

ent A ⋀ ¬A. After all, if the antecedent is of the form of conjunction, the 

consequent can be any of the conjuncts. Likewise, in the case of ortho-

doxy, where the inconsistency of A and ¬A does not preclude making 

them both consistent consequences of the impossible antecedent. This 

shows how crucial for the evaluation of counterfactuals is the antecedent 

and might be a good starting point for a reformulation of heuristics. If 

one would like to express orthodoxy in terms of heuristics one could say 

that “Assuming the possibility of A, if you accept one of A>C and A>¬C, 

reject the other.” This seems to reflect the way in which advocates of 

orthodoxy think about counterfactuals. At the same time, this shows that 

the tension between A>C and A>¬C arises only if A is possible. Thus, 

one can formulate orthodoxy’s heuristics, which has it that: 

(HCC**) “If A does not allow for the simultaneous acceptance of them 

both, if you accept one of A>C and A>¬C, reject the other.” 

Somehow similar heuristics apply to the unorthodoxy as well. The dif-

ference here lies in the fact that the impossibility of A is not a sufficient 

condition for the acceptance of both A>C and A>¬C. This, however, 

does not have to be a deal-breaker, for (HCC**) says nothing about what 

exact conditions A has to satisfy. Thus, (HCC**) can be easily accepted 

by unorthodoxy to expresses the motivation for this view. This can be 

done by claiming that while (A ⋀ ¬A)>A and (A ⋀ ¬A)> ¬A have oppo-

site consequences, both are true due to the fact that both consequences 

are compatible with the antecedent. Thus, in this particular case, the 

antecedent does allow for the simultaneous acceptance of both counterfac-

tuals.  

It should be noted that regardless of whether one favors orthodoxy or 

unorthodoxy, the majority of counterfactuals satisfy (HCC*). Neverthe-

less, there are also examples of pairs of counterfactuals with opposite 

consequents, which makes it implausible to use the mentioned heuristics 

in an unrestricted way. This makes (HCC*) misleading and merely partly 

reflecting the way in which we use counterfactuals. The more accurate 

formulation of heuristics is (HCC**), which—contrary to (HCC) and 
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(HCC*)—does not have to be restricted to a particular type of counter-

factuals. Moreover, this can be applied by both the orthodoxy and the 

unorthodoxy. Considering the lack of restriction in the application of 

(HCC**), there is a good reason to consider this not as a misleading heu-

ristics, but rather as a normative rule, which expresses the relation be-

tween counterfactuals that have the same antecedents, but opposite con-

sequents.  

Nevertheless, if one accepts (HCC**), there is a question of why this is 

supposed to support the unorthodoxy analysis of counterpossibles. After 

all, this rule equally supports the orthodoxy, which suggests that this 

does not move us closer to the finding of an adequate approach towards 

counterpossibles. While this may be the case, one of the theoretical bene-

fits of acceptance of (HCC**) is that this justifies the thesis of this paper, 

i.e., the consistency of the unorthodoxy motivation and other commonly 

accepted rules of counterfactuals. 

The consistency of the unorthodoxy does not have to end the debate 

over an adequate analysis of counterfactuals. For—as Timothy William-

son claims—advocates of the unorthodoxy have to believe in impossible 

worlds, which (along with other assumptions of the unorthodoxy) results 

in implausible hybrid semantics. Compared to this, the unified orthodox 

approach seems to be more attractive (Williamson, 2016b). This leads to 

a consideration of methodological aspects of the debate over counter-

possibles. 

M ETHODOLOGICAL ASPECTS 

Since the acceptance of (HCC**) is consistent both with the ortho-

doxy and the unorthodoxy, one may believe that the debate can be 

framed as a clash of intuitions with respect to the adequate analysis of 

counterfactuals. Thus, one faces two alternatives. The first one is a simple 

model, which—for the last decades—has been considered to be the default 

one, and which has it that every counterpossible is vacuously true. The 

alternative to this is a relatively new approach, which extend the worlds’ 

domain by introducing impossible worlds, and which has it that some 

counterpossibles are false.  

Considering their theoretical virtues, the two approaches highlight dif-

ferent methodological aspects. An advocate of orthodoxy points to the 

simplicity of her view, which is reflected in the simpler domain of the 

worlds. While simplicity is an essential theoretical virtue, this surely is 
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neither the only one, nor the most important.8 This is due to the fact that 

the alternative’s being less simple might be well motivated by its higher 

explanatory power. This condition is implicitly included in the principle 

of parsimony (so-called “Occam’s Razor”), which has it that “entities 

should not be multiplied beyond the necessity.” While the principle is one 

of the most popular, the vast majority of philosophers usually focus only 

on its first part and overlook the second part. For it is not the case that 

entities should not be multiplied at all, but instead they should not be 

multiplied beyond necessity. It is justifiable to consider the mentioned 

necessity to be an explanation of data that are the subject of a given 

theory. Thus, the principle of parsimony should be interpreted as one 

which has it that if two theories have the same explanatory power, one 

should favor the simpler one, i.e., the theory which postulates fewer enti-

ties, hypotheses, axioms, etc. 

In virtue of this, while the orthodoxy is with some respects simpler, 

the complexity of the unorthodoxy’s alternative has a good reason. This is 

the higher explanatory power, which is reflected in taking into considera-

tion pre-theoretical intuitions of different truth-values of counterfactuals 

such as (4–9). Thus, the complexity of unorthodoxy does not have to be 

considered as a violation of the principle of parsimony. On the contrary, 

the entities that are in this case multiplied, are necessary for the explana-

tion of the data. 

This line of defense of unorthodoxy may be faced with the problem of 

officiousness. This problem arises when a theory is too sensitive when it 

comes to identifying data (Hitchcock & Sober, 2004). As philosophers 

who characterized this problem argue, we are often wrong when it comes 

to the recognition of what is the real data and what is merely “noise” in 

the data (Hitchcock & Sober, 2004, p. 10). In such cases, we are faced 

with the problem of wrong identification of what is meant to be explained 

by a given theory. Accordingly, our expectation of a theory to explain a 

given phenomenon is unjustified. 

The inaccurate identification of data may lead to further complica-

tions. After all, if we consider what is merely noise to be real data, there 

is a risk of introducing unjustified changes in the original theory or simply 

rejecting the original theory in favor of the new one. This often happens 

because of a wrongly construed counterexample to the original theory 

 
8 It seems that some consider the parsimony to be merely a question of the 

aesthetic aspect of a given theory (Barcan Marcus, 1995, p. 199). 
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(Williamson, 2018). As Williamson claims, counterfactuals such as (4–9) 

can be considered such wrongly construed counterexamples. What makes 

them inadequate is that the intuition they are supposed to reflect is based 

on the (HCC), which is meant to be implausible.  

If the main reason for which the unorthodoxy is implausible is meant 

to be due to (HCC) or (HCC*), an advocate of this approach might point 

to (HCC**). As I have argued, this seems to go along with the way in 

which we ascribe truth-values of counterfactuals. At the same time, this is 

general enough to be consistent with both orthodoxy and unorthodoxy. 

Importantly, this allows for an indication of the consistency of the latter.  
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INTRODUCTION  

After number, truth is the second great subject in the philosophy of 

Gottlob Frege. In his over forty years of scientific activity, he repeatedly 

modified his understanding of it.1 The changes, however, were not essen-

tial, but rather meant seeking the coherence of the proposed understand-

ing of truth and specifying the original intuitions. I would like to add that 

Frege was always against the definition of truth as the correspondence of 

ideas [Vorstellungs] or a sentence [Satz] with reality. 

In 1893 and 1903, two volumes of Frege’s most important work 

Grundegezte der Arithmetik were published. It was a period2 that could 

be called Frege’s “peak of logicism”, a period in which he believed in the 

success of his project and worked on its further development. 

Although the subject of truth in Frege’s logical and philosophical 

works has been repeatedly investigated, diachronically (Sluga, 2002) and 

synchronously (Burge, 2005; Dummett, 1981; Greimann, 2003a; 2003b; 

2007), there is a lack of studies on his view in the peak period of the de-

velopment of his logicism, especially in Polish literature, where only scat-

tered comments can be found, focusing on the True as a truth-value, 

however, the topic is worth a major study.  

In this article, therefore, I carry out the following research task: to col-

lect and order Frege’s statements about truth during the period of pub-

lishing the two volumes of Grundegezte der Arithmetik. I refer to the 

papers published during Frege’s life, published posthumously and his 

correspondence. The subject of truth appears there in the context of logic, 

philosophy of language, philosophy of logic, philosophy of mathematics 

and ontology. 

Frege’s scientific achievements from 1893–1903 are very specific. Be-

tween the two volumes of Grundegezte der Arithmetik there appeared  

a small book on numbers in Schubert’s approach, rarely mentioned as 

Frege’s book (1899/1990). Of the remaining 29 papers 6 were published 

during Frege’s life, 5 were neither published in his lifetime nor prepared 

 
1 For more on this subject see (Sluga, 2002; Besler, 2010, p. 189–201). 
2 Actually, the period lasted until June 16th in 1902, when Frege received the 

first letter from Russell (Russell, 1902/1976) informing him about the possibility 

of constructing an antinomy based on Frege’s first book (Frege, 1879/1997). Next, 

Frege himself formulated an antinomy based on the logical system from Grundge-

setze der Arithmetik (Frege, 1893; 1903). For more on this subject see (Besler, 

2016). 
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by him for publication. The remaining 18 documents are letters, mostly of 

a scientific nature, written with great care and addressed to eminent sci-

entists of that time: Giuseppe Peano (1858–1932), David Hilbert (1862–

1943), Heinrich Liebmann (1847–1939), and Bertrand Russell (1872–1970). 

Thus, a total of 32 documents were created by Frege in the period 

studied here, not all of which, however, refer to the subject of truth. Par-

ticularly noteworthy are: Grundegezte der Arithmetik (Frege, 1893/2009) 

and the unpublished Logik (Frege, 1897/1983). That is why there are two 

separate sections dedicated to these two texts, whereas the discussions of 

truth from other papers are grouped thematically: the problem of an-

tinomy, geometry, expression of generality, and others. 

There are a lot of words connected with truth in Frege’s writing. Here 

is a list of the terminology typical for the period studied here, from the 

first volume of Grundgesetze der Arithmetik, along with the number of 

times each term is mentioned: the True [Das Wahre] (150), truth 

[Wahrheit] (112), truth-value [Wahrheitswert] (97), the False [das Falsche] 

(78), laws of being true [Gesetze des Wahrseins] (12). In addition, Frege 

often used an adjective (predicate) true/false [wahr/falsch].3 The above 

terminology also occurs in other texts from the period examined here, 

with exceptions being indicated. 

In the last position from the period examined here (Frege, 

1903/2009a), the above words occur less frequently, and the wordings “the 

False” and “laws of being true” are not present at all. It does not mean 

that Frege had changed his point of view, but can be attributed to the 

fact that it is a different type of book. An appendix (Frege, 1903/2009b) 

was added to the book (Frege, 1903/2009a), and in it an attempt to im-

prove the system after a difficulty formulated by Russell (1902/1976). 

From the above words appear there (as technical words) only (in one 

sentence alone): “the True”, and “the False”. 

There are some words fundamentally connected with truth: value-

range of a function [Werthverlauf], thought [Gedanke], contradiction 

[Widerspruch], declarative sentence [Behauptungsatz], judgement [Urtheil], 

science [Wissenschaft]. It is worth adding that in the paper Logik (Frege, 

1897/1983) there is no expression “truth-value”. Moreover, nowhere in the 

 
3 Frege’s German terminology is translated into English in various ways. Here 

I rely on the solutions adopted by the editors of the new English translation of 

Grundgesetze der Arithmetik (Frege, 2016). I do not interfere in the translation of 

quotations. Often—for clarity—I give the original German words. 
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papers discussed here (or to be more precise, in any of Frege’s documents) 

is there an expression “truth conditions” (Wahrheitsbedingungen) often 

invoked by analytical philosophers referring to Frege’s idea of truth (see 

Dummett, 1981, p. 71; Besler, 2010, p. 76). 

In the legacy of Frege, three papers have been found, which are treat-

ed as unfinished textbooks on logic: (Frege, 1879–1891/1983), (Frege, 

1897/1983), (Frege, 1906/1983). The fourth textbook includes articles 

published as Logische Untersuchungen: (Frege, 1918–1919/1990a; 1918–

1919/1990b; 1923/1990). In the last article, Frege presented his point of 

views on truth, thought, sense and reference, nature of logic, negation, 

and generality. This subject area corresponds to the subjects of his previ-

ous unfinished textbooks on logic (Frege, 1897/1983). In none of the 

above-mentioned documents is there Frege’s logical notation, and their 

subject matter falls within the scope of philosophy of logic. 

It is assumed that Logik was written in 1897, between the publication 

of the two volumes of Grundgesetze der Arithmetik. The central theme of 

Logik is truth, as substantially connected with logic. 

It seems that dating this paper should not present any difficulties, be-

cause Frege gave the date in the sentence: “[…] at noon on 1st January 

1897 by central Europe time” (Frege, 1897/1983, p. 135). 4  Moreover, 

German editors established that Frege mentioned: 

1. Wilhelm Wundt’s journal Grundüge der physiologischen Psycholo-

gie, which had appeared since 1874 (p. 144). 

2. A review published in 1897 (p. 146). 

However, one might be surprised by the similarity of many theses con-

cerning truth and thought to the ones from a much later paper (Frege, 

1918–1919/1990a). Here are some possible explanations for this situation, 

each involving a counterargument: 

1. The text was written much later, and the date was not related to 

the date of writing it. Maybe it was meaningful to Frege for rea-

sons unknown to us. Against this solution is his reference to the re-

view from 1897. 

 
4 In the whole article the pages numer refer to English translations of Frege’s 

papers. See References for details. 
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2. Frege did not change his views for twenty years or he returned to 

previously developed solutions. If so, then the concept of objective 

thought as something for the question of the True and the False 

appeared much earlier than the work from the retirement period. 

Against this solution is the lack of repetition of these theses in oth-

er writings from that period, including his letters.  

3. Furthermore, there is a lack of the expression “truth-value” in this 

paper, which was crucial for the examined period. 

For the purposes of this article, I assume, however, that Logik (Frege, 

1897/1983) was written in 1897, between the two volumes of Grundgeset-

ze der Arithmetik. 

GRUNDGESETZE DER ARITHMETHIK  (1893) 

The task of the first volume of Grundgesetze der Arithmetik and the 

subsequent planned volumes, of which only the second one appeared 

(Frege, 1903/2009b), was the presentation of arithmetic as developed 

logic (Frege, 1893/2009, p. VII5). Frege wrote there that logic deals with 

the laws of being true, unlike psychology, which is interested in laws of 

thought (p. XVI). In this context, the subject of truth appeared from the 

point of philosophy of language, and—along with the True, the False—as 

categories used in logic. 

The philosophical aspect of truth is presented in Vorwort, one of two 

introductions to the first volume.6 In the examined period, Frege’s philos-

ophy of language was already fully developed and well-established and he 

referred to his previous article (Frege, 1892/1990b).  

He used philosophy of language to characterize truth. The basis was 

the distinction of (only) three types of linguistic expressions: a proposition 

[Satz], a proper name, and a predicate. Each of these expressions has its 

sense and the reference (understood as the “object” to which the expres-

sion referred).7 The sense of a proposition is a thought, and its reference 

 
5 The page numbers referred to the canonical paging of this book, assumed al-

so in (Frege, 2016). 
6 It is an issue for a separate investigation as to why Frege wrote two different 

introductions, one called Vorwort, the other Einleitung. 
7 For more on sematic categories in Grundegezte der Arithmetik see (Heck, 

2010). 
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is one of two truth values:8 the True or the False. All true (false) proposi-

tions refer to the same object, the True (the False). Here are some exam-

ples showing this point of view: 

The names “22 = 4” and “3 > 2” refer to the same truth-value, which I call 

for short the True. […] The function ξ2 = 4 can therefore only have two 

values, namely the True for the argument 2 and -2 and the False for every 

other argument. (p. 7) 

On the basis of the above quotations it can be generally said that eve-

ry true proposition is a proper name of an object, which is one of two 

truth-values, being the True in example above. And similarly with false 

propositions. 

Frege arrived at the use of sense and reference in the context of truth 

from a different side. Content, as an element distinguished from the ac-

knowledgment of the truth, was described by him as judgeable, and he 

distinguished two more elements (Frege, 1893/2009, p. X) in it: 

1. Thought, which is the sense of proposition. 

2. Truth-value, which is the reference of proposition. 

From an historical point of view the expression truth-value proved to 

be the most important for his philosophy and logic, in fact for all logic in 

20th century. He wrote: “I distinguish two truth-values: the True and the 

False.” (Frege, 1893/2009, p. X) 

The truth-value and the number [Zahl], but not cardinal number 

[Anzahl], were understood as objective, real, ideal objects. The objects 

were characterized by the fact that in their own name, meaning a proper 

name, “[…] they do not […] carry argument place” (Frege, 1893/2009, p. 7). 

It is necessary to add that functions (including propositional functions) 

do not have a truth-value, because as expressions with a variable they are 

incomplete. Functions “obtain” their truth-value only when they are com-

pleted by arguments. However, then, they are not functions any more. 

For Frege, a concept is “a function whose value is always a truth-value, 

 
8 The language of values was introduced into philosophy by Hermann Lotze 

(1817–1881) and Wilhelm Windelband (1848–1915). Frege was in contact with 

these academics. Windelband used the expression Wahrheitswert, Lotze—Gedanke, 

both of which differed from Frege’s understanding of value in logic (Sluga, 2002, 

pp. 84–85; Besler, 2010, pp. 27–28, 73–81). 
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the True or the False” (p. 8), for example: the concept of red is actually  

a function “( ) is red”, true for some arguments, false for others. 

In a paper devoted to the comparison of his and Peano’s notations 

Frege repeated the above-mentioned notions: “[…] all true sentences 

[Sätzen] mean the same thing, namely the True, and likewise all false 

sentences mean the same thing, namely the False” (Frege, 1896/1990, p. 

240). “I use the word Satz in the sense of a combination of symbols whose 

sense is a thought and whose reference is a truth-value—either the True 

or the False” (Frege, 1896/1990, p. 242). 

Incorrectly constructed propositions are treated as false in Frege’s log-

ic and his philosophy of language. (Frege, 1893/2009, p. 10; Frege 

1896/1990, p. 230). He gave the following example. He introduced a sign 

for Sun ʘ and using mathematical language wrote that the sign is greater 

than 2: “ʘ > 2”. Frege called such a proposition false because Sun is not  

a number, however, the following proposition is true: “(ʘ > 2)  (ʘ2 > 2)” 

(Frege, 1896/1990, p. 230). From the definition of the material implica-

tion we know that such a formula is true when predecessor and successor 

are false. 

It is necessary to add that not every syntactically correct sentence 

possesses a truth-value. Frege pointed out two situations: 

1. Subordinate clause in indirect speech. Generally, a thought is the 

sense of a proposition, however, in indirect speech the thought is 

treated as the reference of the subordinate clause (Frege, 1893/2009, 

p. X). Thus, the subordinate clause, as a part of indirect speech 

does not possess a truth-value. 

2. Sentence with a proper name without reference like a sentence in 

poetry (Frege, 1896/1990, p. 227); such a rule was explicitly ex-

pressed in a later paper, however, in this period it is also valid 

(Frege 1897–1898/1983, p. 156). 

Frege’s views discussed above show that the True is essentially con-

nected with his concept of thought. Actually, not only the True, but the 

False as well. Frege also wrote about false thoughts, giving the following 

examples: 02 = 4; 12 = 4; 32 = 4 (1893/2009, p. 6). 

According to Frege, the notion of thought, which supplements his cat-

egories of the Truth and False, is the meaning of the name of a certain 

logical value (Frege, 1893/2009, p. 7). Later, he even wrote about the 

“realm of thought” (Frege, 1918–1919/1990a), considering it an objective 
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reality, unchanging, guaranteeing the possibility of doing science, signifi-

cantly connected with logic. In the context of logic he wrote: “[…] I ex-

press thoughts with my signs, it will be helpful to look at some of the 

easier cases in the table of more important theorems, to which a transla-

tion is appended” (Frege, 1893/2009, p. XI). 

Truth is a notion that is also used in Frege’s formal logic. For example, 

logical laws are called laws of being true (Frege, 1893/2009, p. XVI). 

Some of the logical laws served as the basic laws, not proved in Frege’s 

system, one of them being the problematic law V.9 

In the period of writing the two volumes of Grundgesetze der Arith-

metik, the truth-values were used by Frege to determine the conditions 

for propositions constructed both of connectives and quantifiers to be true. 

Earlier in this context, Frege used the words: affirm [bejahen], deny [ver-

neinen] (Frege, 1879/1997, p. 5),10 instead of the True and the False.11 

There are the logical symbols that Frege characterized with a reference to 

the truth-value (I give them in Frege’s order): judgement-stroke, horizon-

tal-stroke, negation-stroke, equality-sign, quantifier-sign, conditional-sign. 

He mentioned his first book (Frege, 1879/1997) and distinguished “two 

components in that whose external form is a declarative sentence: 

1. Acknowledgement of truth. 

2. The content, which is acknowledged as true” (Frege, 1893/2009, p. X). 

The “acknowledgment of truth” is “marked” on a logical formula by at-

taching the so-called judgement-stroke and Frege described it as follows: 

We are therefore in need of another special sign in order to be able to as-

sert something as true. To this end, I let the sign “├ ”  precede the name of 

the truth-value, in such a way, e.g., in ├ 22 = 4 it is asserted that the 

square of 2 is 4. (Frege, 1893/2016, p. 9; Greimann, 2000) 

 
9 For more on this subject see the section The Problem of Antinomy. 
10 In the English edition p. 121. Apart from this example, page numbers are 

given from the English editions. 
11 It is worth adding, that Ernst Schröder (1841–1902), Charles S. Peirce and 

Frege are treated as originators of truth tables. However, Schröder used the ex-

pressions es gilt, es gilt nicht in this context (Marek, 1993, p. 10–11). 
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The necessity of this judgment-stroke is so obvious, natural and neces-

sary to Frege that in a letter to Peano, with whom he corresponded dur-

ing this period, he wrote: 

I have [..] the sign |, the judgement stroke, which serves to assert some-

thing as true. You have no corresponding sign, but you acknowledge the 

difference between the case where a thought is merely expressed without 

being put forward as true and the case where it is asserted. (Frege, 

1896/1976, p. 185–186) 

The so-called horizontal-stroke, is a sign of a one-place function from 

objects whose value is one of two truth-values (Frege, 1893/2009, p. 16–

17). The value of this function is the True when its argument is the True. 

There are two other cases: 

1. The False is the function’s argument. 

2. None of the truth-values is the function’s argument, but for ex-

ample, the number 2 (Frege, 1893/2009, p. 10). 

Then the value of the function is the False. 

The negation (written as a short stroke attached to the horizontal-

stroke) is defined as the value of a false function for every argument and 

this function without a negation sign is true for every argument (p. 10). 

An expression with the equality-sign refers to the True when expres-

sions with the same logical value appear on both sides of the connective 

and to the False in any other case (p. 11). 

The universal quantifier was written by Frege as a concavity in the 

content-stroke with the Gothic alphabet letter. He assumed that the for-

mula “[…] refer[s] to the True if the value of the function Φ (ξ) is the 

True for every argument, and otherwise the False” (p. 12). 

The conditional-sign (a sign for material implication) was written as  

a vertical stroke connecting two horizontal strokes and characterized as 

the False when the predecessor is the True and the successor is not the 

True (p. 26). 

Frege also gives examples of functions whose value for every argument 

is the False: 

1. The formula   was read as the value-range of 

a function “it is denied that for every a, a = a” (p. 17). 
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2. Connecting one of the truth-values to a value-range with an equali-

ty-sign (see p. 17). 

In Frege’s logic, truth was also presented by logical entailment. In  

a paper written between 1899 and 1906 he wrote: “Truths [Wahrheiten] 

can be inferred in accordance with logical laws of inference. If a truth 

[Wahrheit] is given, it can be asked from what other truths its truth fol-

lows in accordance with logical laws of inference” (Frege, 1899–1906/1983, 

p. 168). 

To sum up the topic of truth in Grundgesetze der Arithmetik, it can 

be said that it was both a philosophical notion and a useful “tool” for 

studying the truth-value of logical formulas, inferences and the character-

istics of connectives or the quantifier. The True was expressed verbally or 

using the assertion-stroke. 

LOGIK (1897): AN UNFINISHED TEXTBOOK 

This paper, unfinished and not published by Frege, is worthy of spe-

cial attention for a number of reasons, including the method Frege used: 

referring to the ways of using the word “true” in ordinary language. He 

also pointed out words associated with the predicate “true”, and words 

that do not have a significant relationship with it, although these expres-

sions were used in an ordinary language. Next, he collected contexts in 

which the word “true” occurred and rejected misleading, improper usage. 

He compared the predicate “true” to other predicates (p. 126, 128)12 and 

listed differences. The predicate “true” had nothing in common with the 

ideas [Vorstellungen], and was not “applicable to what is material” (p. 

126). 

Frege suggested setting limits on the valid applicability of the word 

“true”. Although he did not explicitly state this position, it can be said on 

the basis of this and other papers that the predicate “true” refers to 

thoughts first and, sentences second, and in particular assertoric sentences 

[Behautungssätzen] (p. 126, 129). For sentences [Sätzen] are “a proper 

means of expression for a thought” (p. 126), and “a sense of the sentence 

is called a thought” (p. 126). 

 
12 All quotations from this section, unless otherwise stated, come from the pa-

per mentioned in the heading.  



 GOTTLOB FREGE ON TRUTH… 71 

 

In a natural language, “true” is also combined with ideas and experi-

ence, which Frege rejected as groundless. He also wrote that we do not 

need the word “true” to say that the idea of the Cologne cathedral agrees 

with reality. As the legitimate use of the word “true” he gave predicating 

it on a proposition like 2 + 3 = 5 (p. 129). If, however, one speaks of an 

idea called true “[…] it is really a thought to which the predicate is as-

cribed” (p. 126). 

Although truth is the goal for all science, logic is in a special way re-

lated to the predicate “true”, like ethics to “good”, aesthetics to “beautiful”, 

physics to “heavy” and “warm”, chemistry to “acid” and “alkaline” (p. 128). 

The word “true” specifies the goal of logic (p. 126).  

The “true” and “beautiful” predicates, however, differ significantly. 

There may be a contradiction between propositions of logic, but 

“[a]esthetic judgements don’t contradict one another” (p. 126). What is 

true—as Frege wrote—is “true in itself” (p. 126) and what is beautiful is 

not “beautiful in itself” (p. 126). In addition, the “true” predicate is not 

gradable, unlike “beautiful”—which can be graduated (p. 126). 

For Frege, logic, like ethics, is the normative science based on the 

most general laws of truth (p. 128). Next, he wrote:  

Logic is concerned with the laws of truth, not with the laws of holding some-

thing to be true, not with the question of how men think, but with the ques-

tion of how they must think if they are not to miss the truth. (p. 149) 

That is why the laws of truth are contrasted with the laws of thinking 

and the laws of judging that psychology deals with (p. 145–146). Moreo-

ver, “[t]he laws of truth, like all thoughts, are always true if they are true 

at all” (p. 148). 

In the unfinished textbook on logic, Frege clearly wrote about the in-

definability of truth for the first time: “Truth is obviously something so 

primitive and simple that it is not possible to reduce it to anything still 

simpler” (p. 129). Therefore, he considered truth to be indefinable. In 

such cases one only has to “[…] to lead the reader or hearer, by means of 

hints, to understand the word as it is intended” (Frege, 1892/1990a, p. 

183). In a later paper, from 1914, this activity would be called elucidation 
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[Erläuterung], distinguished from defining (Frege, 1914/1983, p. 207). 13 

However, it seems strange because he described elucidation as a pre-

scientific activity, beyond science, it was only its propedeutics. 

Frege devoted a lot of space to the concept of thought, to which the 

predicate “true” fundamentally referred. Next, the predicate “true” referred 

to a declarative sentence. 

In his concept of thought, first, truth (or falsity) is not a matter of 

recognition by one person or another. The objectivity of truth (or falsity) 

results from the “fixing” in objective thought. Frege believed that this 

guarantees objectivity in science. He wrote: 

[…] thoughts have [not] to be thought by us in order to be true. […] 

Thoughts are independent of our thinking. A thought does not belong spe-

cially to the person who thinks it, as an idea does to the person who has it. 

[…] A contradiction between the assertion [Behauptungen] of different peo-

ple would be impossible. (Frege 1897/1983, p. 127) 

Next, thought is not mental. But if it were, then: 

1. “[…] its truth could only consist in a relation to something exter-

nal, and that this relation obtained would be a thought into the 

truth of which we could inquire” (p. 127). 

2. Mathematical propositions would look as follows: “It has been ob-

served that with many people certain ideas form themselves in as-

sociation with the sentence ‘2 + 3 = 5’” (p. 134). 

To sum up, I would like to emphasise the similarity between the un-

published Logik (1897) and Der Gedanke (1918–1919) published twenty 

years later; however, this topic needs further study. 

TRUTH IN PARTICULAR CONTEXTS  

Problem of Antinomy 

Questions of truth, falsity and words connected with them occurred in 

the Frege—Russell correspondence. This exchange of letters referred 

 
13  In this paper, Erläuterung is translated as illustrative examples, 

however, in the literature in this context elucidation is used. See (Weiner, 

2002; Besler, 2010, p. 148–149).  
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mainly to the problem of antinomy and the edition of the second volume 

of Grundgesetze der Arithmetik (Frege, 1903/2009a, with Frege, 

1903/2009b).14 Truth appears there in philosophical and logical contexts. 

Frege tried to convince Russell on his philosophy of language, in which 

task he failed. Nevertheless, we have many clear passages related to phil-

osophical solutions adopted for truth and falsity. They do not bring any-

thing new to Frege’s previous point of view, but they are worth special 

attention due to their precision and the unambiguity of the wording. Here 

are two examples, one from 1902, the other one written a year later: 

As you know I distinguish between the sense and the meaning [Bedeutung] 

of a sign, and I call the sense of a proposition [Satz] a thought and its 

meaning a truth-value. All true propositions have the same meaning: the 

true; and all false propositions have the same meaning: the false. (Frege, 

1902/1983c, p. 149) 

[…] all propositions that express a true thought mean the same, and like-

wise all propositions that express a false thought. We have, e.g., 3 > 2. 

 .22 = 4 and 22 = 4. . 3 > 2; consequently: 3 > 2. = .22 = 4. (Frege, 

1903/1976, p. 158) 

The task of the True and the False in Frege’s logic is shown by the 

quotation from yet another letter: “Regarding the last points you touch 

on, I shall make the following: ἐ(⎯) is a class comprising only a single 

object, namely the true, and  is a class comprising only 

a single object, namely the false” (Frege, 1902/1976b, p. 137). 

Truth is essentially connected with the Law V, leading to antinomy. 

This law says: the equality of the value-ranges of two functions is equal to 

the general equality of those functions for every argument, in Frege’s 

notation (1893/2009, p. 36): 

 

Frege tried to save his system of logic against antinomy. In an after-

word to the second volume of Grundgesetze der Arithmetik, he introduced 

a limitation of the generality of a function in defining the basic concepts 

of the arithmetic of natural numbers (Frege, 1903/2009c). The expres-

sions the True and the False appeared there only once:  

 
14 For more on the Frege—Russell correspondence see (Besler, 2016). 
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[…] the extension of a concept under which only the True falls should be 

the True and that the extension of a concept under which only the False 

falls should be the False. These determinations suffer no alteration under 

the new conception of the extension of a concept. (Frege, 1903/2009c, p. 

263) 

I would like to add that Frege was aware of a problematic aspect of 

the Law V ten years before Russell’s discovery. He wrote: 

If anyone should believe that there is some fault, then he must be able to 

state precisely where, in his view, the error lies: with the basic laws, with 

the definitions, or with the rules or a specific application of them. If every-

thing is considered to be in good order, one thereby knows precisely the 

grounds on which each individual theorem rests. As far as I can see, a dis-

pute can arise only concerning my basic law of value-ranges (V), which 

perhaps has not yet been explicitly formulated by logicians although one 

thinks in accordance with it if, e.g., one speaks of an extension of a con-

cept. I take it to be purely logical. At any rate, the place is hereby marked 

where there has to be a decision. (Frege, 1893/2009, p. VII) 

It could be said that Frege doubted the truth of the Law V from the 

beginning (comp. Heck, 2010, p. 349–352), and unfortunately the Law  

V was crucial for his logistic program. 

 

Geometry 

Frege became acquainted with a new approach to geometry, which 

was David Hilbert’s Grundlagen der Geometrie (1899). He was very im-

pressed with this book, however, he could not agree with Hilbert. Frege 

did not accept (or did not understand) geometry understood as a formal 

system, allowing many models, including models of Euclidean geometry.  

The topic of truth appears in the Frege—Hilbert correspondence in 

the context of different understanding of axioms in the system of geome-

try and their tasks. For Frege, axioms are true propositions. They do not 

need any proving, because “[…] our knowledge on them flows from  

a source very different from the logical source, a source which might be 

called spatial intuition. From the truth of the axioms it follows that they 

do not contradict one another” (Frege, 1899/1976, p. 37). 

Frege assumed that all axioms of Euclidean geometry were irrefutable, 

he was convinced that “[…] it will be impossible to give such an example 

in the domain of elementary Euclidean geometry because all the axioms 
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are true in this domain” (Frege, 1900/1976, p. 71). Moreover, according to 

Frege, the axioms were necessarily consistent with each other. The truth 

and consistency of the axioms mutually conditioned each other. 

Hilbert did not accept Frege’s (idealistic) understanding of thought. 

Therefore, the philosophical background, always present in Frege’s analy-

sis, and rarely found in letters addressed to him, significantly disunited 

these correspondents. According to Frege, the thoughts-axioms are ex-

pressed in sentences-axioms (Blanchette, 2015, p. 111). 

Similarly to many topics developed by Frege, the philosophy of lan-

guage also appeared in the context of truth in geometry. In an un-

published paper on geometry from 1899–1906 he wrote: 

In the majority of cases what concerns us about thought is whether it is 

true [Wahrsein]. The most appropriate name for a true thought is a truth 

[Wahrheit]. A science is a system of truths [Wahrheiten]. A thought, once 

grasped, keeps pressing us for an answer to the question whether it is true 

[Wahrsein]. We declare our recognition of the truth of a thought, or as we 

may also say, our recognition of the truth [Wahrheit], by uttering a sen-

tence with assertoric force. (Frege, 1899–1906/1983, p. 168) 

After completing the correspondence with Hilbert, Frege returned sev-

eral times to expressing his opinion on Hilbert’s new approach to geome-

try. In one of the published articles, he repeated the thesis about the 

truth and consistency of axioms (Frege, 1903/1990). 

It is worth pointing out at this juncture that Frege’s comments on 

Hilbert’s geometry were widely discussed, and Frege went down in the 

history of geometry as a defender of the truth of axioms (Freudenthal, 

1957/2009, p. 494). 

 

Expression generality 

Frege combined truth with the expression of generality. In his logic, 

the generality of expressions is written in two ways: 

1. Using the quantifier symbol. 

2. By the appropriate type of variables. 

As we may see, only the universal quantifier 
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is introduced as a separate symbol. It was characterized in relation to 

truth-values as I have already written in this article. 

Frege also used an existential quantifier (not calling it such), although 

it was absent as a separate sign. It was written with the use of the uni-

versal quantifier and negation-stroke, for example: 

 ,
 

and read as “there is [es gibt] at least one square root of 1” (Frege, 

1893/2009, p. 12). Probably due to the lack of a separate symbol for the 

existential quantifier, Frege connected truth only with the expression of 

generality and did not refer truth to the existential quantification. 

Frege also signified generality by using an appropriate variable letter. 

For objects, they are letters of the Latin alphabet, x, a, etc. (Frege, 

1893/2009, p. 11). He wrote: 

In order to obtain an expression for generality, one might have the idea of 

defining: “Let us understand ‘Φ(x)’ as the True if the value of the function 

Φ(ξ) is True for every argument; otherwise it shall refer to the False”. 

(Frege, 1893/2009, p. 11) 

For functions, they are capital letters of the Greek alphabet, Φ, Γ, etc. 

(Frege, 1893/2009, p. 35). There are also appropriate symbols for argu-

ments of functions of higher degrees (Frege, 1893/2009, p. 60–61). 

Truth is, for Frege, substantially connected with expressions of gener-

ality because, when assuming the above rules, they express the true 

thoughts (Frege, 1898–1903/1983, p. 162). 

In this context, the assertion-stroke also appeared. Only sentences or 

formulas with a specific general domain can be preceded by the assertion-

stroke, that is to say formulas with a quantifier or variables that express 

generality. 

An example of a formula substantially connected with generality is the 

Law V, it expresses that equality of the value-ranges of two functions is 

equal to the general equality of those functions for every argument (Frege, 

1893/2009, p. 36). After discovering that it leads to antinomy (Frege, 

1902/1976a), Frege limited the domain of the functions, and in doing so 

he limited the scope of truth of the Law V (Frege, 1903/2009b, p. 262–

263). At this juncture, as Frege saw it, he lost the generality of arithmeti-

cal propositions (Frege, 1903/2009b, p. 255). 
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Other Contexts 

In the period examined here, the topic of truth also appears in other 

contexts, presented in Frege’s correspondence with the great mathemati-

cians of those times: David Hilbert (1862–1943) and Giuseppe Peano 

(1858–1932). 

Frege’s first letter to Hilbert concerned mathematical symbolism, and 

in this context the subject of truth appeared. Frege referred to mathemat-

ics understood as a game of symbols, in isolation from their references 

and wrote: 

A mere mechanical operation with formulas is dangerous (1) for the truth 

of the result and (2) for the fruitfulness of the science. The first danger can 

probably be avoided almost entirely by making the system of signs logical-

ly perfect. As far as the second danger is concerned, science would come to 

a standstill if the mechanism of formulas were to become so rampant as to 

stifle all thought. (Frege, 1895/1976, p. 33)15 

Another thread comes from Frege’s letter to Peano (undated, but 

surely written between 1896 and 1903) and concerns consequences result-

ing from various ways of defining equality in arithmetic, as a result of 

which 

[…] mathematicians agree indeed on the external form of their propositions 

but not on the thoughts they attach to them, and these are surely what is 

essential. What one mathematician proves is not the same as what another 

understands by the same sign. We only seem to have a large common store 

of mathematical truths [Wahrheiten], This is surely an intolerable situation, 

which must be ended as quickly as possible. (Frege, 1896–1903/1976, p. 

126) 

In these circumstances, Frege proposed, first of all, accepting identity, 

“complete coincidence” as the reference of the equality-sign (Frege, 1896–

1903/1976, p. 126). Furthermore, thanks to distinguishing the equality at 

the level of sense from the equality at the level of reference, mathematics 

will be protected from generating always true, but boring instances of the 

principle of identity, a = a (Frege, 1896–1903/1976, p. 126). 

 
15 In this letter Frege referred to his article (Frege, 1885/1900). It is not clear 

if Hilbert knew this paper. 
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LATER UTTERANCES ON THE TRUTH  

Shortly after the publication of the position (1903b/2009) closing the 

period examined in this article, Frege introduced important new points to 

his theory of truth. It remains a separate topic as to how the problem of 

antinomy conditioned these changes, however, this topic requires a sepa-

rate careful study. 

Frege’s penultimate letter to Russell is worth attention. There, Frege 

once again emphasised the particularity of the “true” predicate. What is 

more, there appears—for the first time—an excerpt, which can be treated 

as a basis for crediting Frege with a redundant understanding of truth: 

[…] “true” is not a predicate like “green”. For at bottom, the proposition “It 

is true that 2+3=5” says no more than the proposition “2+3=5”. Truth is 

not a component part of a thought, just as Mont Blanc with its snowfields 

is not itself a component part of the thought that Mont Blanc is more 

than 4000 high. (Frege, 1904/1976, p. 163) 

Whether Frege actually assumed the redundant theory of truth and, if 

so, to what extent16 is beyond the scope of this paper. 

In the above-quoted letter there is also a clearly formulated principle 

of extensionality, referring to the substitutability salva veritate of expres-

sions. This principle had already been used by Frege in his letter to Rus-

sell. He gave the following example of two propositions referring to the 

True: 2 + 3 = 5 and 2 = 2. Therefore it is correct to write: (2 + 3 = 5) 

= (2 = 2) (Frege, 1893/2009, p. 9), where the sign “=” between the 

brackets shows the identity of the expression in brackets on the level of 

reference, but not on the level of sense. In the letter to Russell there is 

the following wording of the principle of extensionality used here: 

Then and only then does the meaning of the proposition enter into our 

considerations; it must therefore be most intimately connected with its 

truth. Indirect speech must here be disregarded. Disregarding it, we can 

therefore say that true proposition can be replaced by any true proposition 

without detriment to its truth, and likewise any false proposition by any 

false proposition. (Frege, 1904/1976, p. 165) 

 
16 For example Baldwin maintained that Frege did not assume the deflation-

ary theory of truth (Baldwin, 1997, p. 9). 
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In 1918, Frege received from Ludwig Wittgenstein (1889–1951)  

a manuscript of Logisch-philosophische Abhandlung (Wittgenstein, 

1921/1997) and inspired by it he published an article (Frege, 1918–

1919/1990a). There he repeated many of his theses from the earlier paper 

(Frege, 1897/1983), adding arguments against the correspondence theory 

of truth17 and the expression “the realm of thought” and its philosophical 

description. 

CONCLUSION  

For Frege, during the period of publishing the two volumes of 

Grundgesetze der Arithmetik, truth was an important category in the 

fields of philosophy of language (he starts from this aspect), formal logic 

(here truth plays the role of the key “tool”), philosophy of logic (expres-

sion of generality and the problem of antinomy), philosophy of mathemat-

ics (the problem of true axioms in geometry and understanding of equali-

ty in arithmetic) and ontology (idealistic understanding of the realm of 

thought, which is really connected with the truth). Bearing in mind the 

development of Frege’s views on truth (Sluga, 2002), here I collect his 

main theses from the investigated period: 

1. At the starting point, truth is examined on the basis of an ordinary 

language. 

2. In logic, truth is expressed by the assertion-sign, therefore, truth is 

connected with judging. 

3. Truth refers to logic more than any other science. 

4. Truth is a normative category, because logical laws—as true—

determine the direction of thinking. 

5. Language expressions have sense and reference, the reference of 

sentences is truth-value (the True or the False). 

6. Logic connectives, quantifier and logical entailment are character-

ized by truth-values. 

7. The truth-bearers are: first thought, then proposition (or sentence) 

and language of science. Never ideas [Vortsellungen]. 

 
17 Frege’s criticism of the correspondence theory of truth was presented in 

(Sluga, 2007, p. 4–9; Baldwin, 1997). 
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8. The philosophical notion of thought is essentially connected with 

truth, as a certain unchanging objective ideal reality. 

9. Truth is a primitive, indefinable term. 

10. Truth—next to consistency—is an important notion describing ge-

ometrical axioms. 
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S U M M A R Y : The article deals with the question of in which sense the notion of 

explanation (which is rather characteristic of empirical sciences) can be applied to 

Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims 

that in mathematics we are dealing with facts that have an objective character (in 

particular, they are independent of our activities). One of these facts is the solva-

bility of all well-formulated mathematical problems—and this fact requires  

a clarification. The assumptions on which Gödel’s position is based are: (1) meta-

physical realism: there is a mathematical universe, it is objective and independent 

of us; (2) epistemological optimism: we are equipped with sufficient cognitive 

power to gain insight into the universe. Gödel’s concept of a solution to a mathe-

matical problem is much broader than of a mathematical proof—it is rather about 

finding reliable axioms that lead to a (formal) solution of the problem. I analyse 

the problem presented in the article, taking as an example the continuum hypoth-
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One of the theses put forward by Gödel is that about the solvability of 

all well-formulated mathematical problems. From the point of view of 

experience in the field of “everyday” mathematics (including school math-

ematics), this thesis seems obvious: every task can be solved, even very 

difficult open problems eventually give way to the pressure of the efforts 

of generations of mathematicians. However, Gödel is the author of the 

theorem that for each (reasonable) theory T, there are propositions that 

are undecidable in this theory. How can we reconcile this result with his 

thesis on the universal solvability of problems? In order to answer this 

question, a certain explication of the concept of solving a mathematical 

problem is necessary. Then it will be possible to analyse the thesis, ac-

cording to which every problem would be solvable. How to explain it—

and what explanation for this state of affairs is given by Gödel? I think 

that using the category of explanation here is justifiable. It is more and 

more often discussed in relation to mathematics—here it will have some 

specificity, but I think that its use will shed new light on the issue. 

The article has the following structure: 

1. Gödel’s philosophy of mathematics. 

2. The problem of explanation in mathematics. 

3. The example of the continuum hypothesis. 

4. Summary. 

In part 1, I point to the basic elements of Gödel’s philosophical 

worldview. The presentation is of course—necessarily—brief. In Part 2,  

I formulate the basic questions posed in the debate, I also briefly mention 

the problem of mathematical explanations in the natural sciences—and  

I formulate the title question/s. Part 3 is devoted to the analysis of the 

issue on the basis of a standard and well-known example—namely the 

continuum hypothesis. The article ends with a short summary. 

1. GÖDEL’S PHILOSOPHY OF M ATHEM ATICS2 

Gödel was in a way, a model mathematical Platonist. In his opinion, 

there is an objective, mathematical universe independent of us, which is 

 
2 This is a very brief and sketchy presentation. A detailed analysis of Gödel’s 

philosophical position is contained, for example, in the works of Krajewski (2003) 

and Wójtowicz (2002). 
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described (although, of course, in an imperfect way) through mathemati-

cal theories—and to which we have cognitive access through a kind of 

intuition. 3  Gödel focused on set theory, and his philosophical analyses 

often refer to it.4 Gödel’s views on the nature of mathematics naturally 

combine with a broader vision regarding the role and nature of philoso-

phy. Gödel stressed the importance of fundamental analyses, in particular, 

analyses of the meaning of basic metaphysical concepts. He even hoped 

that he could describe these terms in an axiomatized way.5 It is worth 

emphasizing his clear opposition to the dominant neo-positivist vision of 

mathematics (and philosophy, in particular metaphysics). Gödel even 

argued that the “spirit of the times” (Zeitgeist) is not in favour of his 

views that metaphysical considerations are meaningful and that mathe-

matics is not the syntax of the language of science, but expresses objec-

tive truths. Conventionalism is not a good explanation for the nature of 

mathematics; conventions are, of course, present in mathematics, but 

they are not arbitrary, but—freely speaking—they convey the essence of 

concepts and express objective truths.6 

 
3 “Despite their remoteness from sense experience, we do have something like  

a perception also of the objects of set theory, as is seen from the fact that the 

axioms force themselves upon us as being true. I don’t see any reason why we 

should have less confidence in this kind of perception, i.e., in mathematical intui-

tion, than in sense perception, which induces us to build up physical theories and 

to expect that future sense perceptions will agree with them, and, moreover, to 

believe that a question not decidable now has meaning and may be decided in the 

future” (Gödel, 1964, pp. 120–121). 
4 Gödel’s philosophical worldview was clearly reflected in his methodological 

decisions regarding how (by which methods) mathematics can be practised. Gödel 

declared that the belief in the existence of an objective mathematical world con-

stituted the motivation for the free use of non-constructive methods based on 

strong assumptions about the existence of objects of a certain type. 
5 Gödel’s proofs for the existence of God can be considered an attempt at this 

type of precision. Wang talks about the conversation between Gödel and Carnap 

on the 13th of September, 1940 (1987, p. 217), the subject of which was metaphys-

ics, in particular the creation of a coherent metaphysical doctrine based on the 

notions of God and the soul as primitive. In Carnap’s opinion, such a theory 

would have a mythological character, whereas Gödel’s position is completely dif-

ferent. He claims that such a theory could be no less sensible than theoretical 

physics, which cannot be expressed in purely observational terms. 
6 The discussion of “syntactic interpretation” is devoted, for example, to the 

work in which Gödel writes: “in whatever manner the syntactic rules are formu-
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Sometimes Gödel’s position is presented as an expression of some kind 

of dogmatism—through a certain type of “act of faith” we postulate the 

existence of a mathematical universe to which mathematical propositions 

refer. Such a position would resemble the “working hypothesis” of many 

mathematicians—those who to the eternal question of whether mathemat-

ics is discovered or created, answer discovered (which is consistent with 

the position of realism, and can even be interpreted as one formulation of 

the realistic position). It would be an expression of a certain type of natu-

ral ontological position of a mathematician—but without any further 

justification.7 However, Gödel did not accept this position in a dogmatic 

or non-reflective manner. It is worth noting a quite unusual—considering 

the conception of Gödel—and probably little-known quotation: “Our axi-

oms, if interpreted as meaningful statements, necessarily presuppose  

a kind of Platonism, which cannot satisfy any critical mind” (Gödel, 1933, 

p. 50). We do not find such sceptical statements very much, but they 

document the fact that Gödel was aware that accepting a realistic posi-

tion requires justification (and, of course, more precision—because realism 

can take many different forms). This may testify to a certain evolution of 

Gödel’s views. He writes very clearly about this: 

Some body of unconditional mathematical truth must be ackhnowledged, 

because, even if mathematics is interpreted to be a hypothetical-deductive 

system, still the propositions which state that the axioms imply the theo-

rems must be unconditionally true. The field of unconditional mathematical 

 
lated, the power and usefulness of the mathematics resulting is proportional to the 

power of mathematical intuition necessary for their proof of admissibility. [...] it is 

clear that mathematical intuition cannot be replaced by conventions, but only by 

conventions plus mathematical intuition” (Gödel, 1953/9, p. 358). 
7 “However, when I do mathematics, I have a subjective feeling that there is  

a real world to discover: the world of mathematics. This world is much more 

imperishable for me, immutable and real than the facts of physical reality” 

(L. Bers, in: [Hammond, 1978, p. 19]). Hardy: “Personally, I always considered the 

mathematician in the first place as an observer, a man who observes a distant 

mountain range and notes his observations. His task is to clearly identify and 

describe to others as many peaks as possible” (Hardy, 1929, p. 18). Cantor talked 

about himself as a rapporteur for the results of his research. The conviction that 

the world of mathematical entities exists objectively—and we only discover it—

connects all these mathematicians. Of course, I’m not saying that this position is 

the only one—or even that it is the dominant position among mathematicians, 

but that is a separate issue. 
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truths is delimited very differently by different mathematicians. At least 

eight standpoints can be distinguished. […]: (1) classical mathematics in 

the broad sense (i.e. set theory included), (2) classical mathematics in  

a strict sense, (3) semi-intuitionism, (4) intuitionism, (5) constructivism, (6) 

finitism, (7) restricted finitism, (8) implicationism. (Gödel, 1953/9, p. 346) 

Gödel’s argumentative strategy consists in adopting a weak version of 

realism as an initial assumption—and then a gradual strengthening of the 

position by indicating the relevant arguments. Number theory is a natural 

choice for this initial assumption because it is fundamental in mathemat-

ics—and widely known. Number theoretic propositions seem to express 

objective content. 8  The assumption that number-theoretic propositions 

have an objective character seems to be relatively uncontroversial. This is 

clearly stated in the following quote: 

Logic and mathematics—like physics—are based on axioms that have real 

content […]. That such real content exists is evident through the study of 

number theory. We come across facts that are independent of any conven-

tions. These facts must have content, because the consistency of number 

theory cannot be based on trivial facts. […] There is a weak form of Plato-

nism that no one can deny. […] When we compare the Goldbach hypothe-

sis with the continuum hypothesis, we are more convinced that the first of 

them must be true or false. (Gödel’s statement in: Wang, 1996, pp. 211–

212) 

This opinion is significant in the context of Gödel’s first and second 

theorems, according to which Peano arithmetic (PA) is imcomplete and 

its own consistency cannot be proved. Gödel’s sentence (constructed in 

the proof) expresses—freely speaking—its own unprovability. We perceive 

it as true, but of course this is already due to a semantic analysis, going 

beyond the formal PA arithmetic. According to Gödel, such argumenta-

tion is fully legitimate (although it is not formalizable in PA). The source 

of mathematical knowledge is the analysis of concepts. It is based on the 

specific cognitive ability of our mind, i.e. mathematical intuition. This 

leads us to ever stronger theories, which we have the right to give realis-

tic interpretations. 

 
8 It seems relatively natural to recognize that the truths of number theory 

have a “hard” character, that they are not just a matter of convention. The thesis 

that there exist n! permutations of the n-element set seems to be objective—and 

not the result of a purely conventional assumption. 
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2. PROBLEM S OF EXPLANATION IN  M ATHEM ATICS 

The problem of mathematical explanation is found in (at least) two 

areas: (i) mathematical explanations in natural sciences; (ii) explanations 

inside mathematics. Here, I focus exclusively on the issue of (ii). Probably 

the most natural version of this issue is the question about the explanato-

ry nature of mathematical proofs: can (should?) mathematical proof play 

an explanatory role—and what does that mean? It is clear that the basic 

function of proofs is to convince (in accordance with the standards of 

mathematical argumentation) that a theorem is true. At the same time, 

the natural (but not strictly formal) question for a mathematician is one 

about deeper causes, about the whole “background of phenomena”. Speak-

ing freely, when analysing mathematical proofs, it is important not only 

how the individual inferential steps follow from each other, but “what’s 

really going on here?”. Using somewhat metaphorical language, it is about 

this subtle “game of mathematical concepts”, which does not boil down to 

the fact that the next step of the proof results from the previous one. 

Understanding mathematical proof as a formal verification of facts (by 

examining formal dependencies) does not fully reflect the understanding 

of mathematical proof as a source of mathematical knowledge. Sometimes 

mathematicians speak in such a spirit: 

Even when a proof has been mastered, there may be a feeling of dissatis-

faction with it, though it may be strictly logical and convincing; […]. The 

reader may feel that something is missing. The argument may have been 

presented in such a way as to throw no light on the why and wherefore of 

the procedure or on the origin of the proof or why it succeeds. (Mordell, 

1959, p. 11; citation based on: Mancosu, 2008, p. 142) 

Similarly, Rota writes (in the context of computer evidence) that 

“[v]erification is proof, but verification may not give the reason” (Rota, 

1997, p. 187).9 The question about the explanatory role of mathematical 

proofs has a long history—as early as in Aristotle one can find a distinc-

tion corresponding, in today’s terminology, to reasoning that only justifies 

 
9 There is no room for detailed analysis of the issue. I consider Rav’s article 

(1999), in which the author analyses the role of proofs in mathematics, accentuat-

ing its central place, to be very interesting. 
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a certain thesis and reasoning that explains the reasons.10 Mathematicians 

themselves are obviously aware of the different nature and function of 

proofs. Mancosu (2018) gives an example of a monograph on algebraic 

geometry, which deals with various proof methods, and in which the au-

thor rejects the so-called the transfer method (despite its effectiveness), 

indicating that it allows to give a logical proof of a certain result, but 

does not explain it.11 The discussion about explanations in mathematics is 

lively—there are many detailed analyses regarding individual theorems, 

the links between the problem of explanation and the (quite elusive but 

important) concept of depth in mathematics, 12  aesthetic issues, or the 

problem of purity of proofs (i.e. using methods limited to a given field—

e.g. purely geometric methods in proofs of geometry theorems or combi-

natorial methods in combinatorial proofs). However, there is still no good 

general answer to the question of what is the real source of explanatory 

power of mathematical proofs. 

The problem of explanation may also have a broader character—and 

may relate not only to the proofs, but even to broader classes of issues. 

The question “why is squaring the circle impossible?” has a slightly broad-

er dimension: the answer can be found outside of geometry, in Galois’s 

theory. Therefore, it is no longer a question of the proof only, but also or 

giving a proper interpretation of one theory in another. Similarly, you can 

ask questions about the nature of concepts which are fundamental for  

a given theory, about the most natural formulations (definitions), etc. 

This is a very broad issue and will not be addressed here.  

This problem of explanation (or maybe: a series of problems) concerns 

explanations inside mathematics. However, the subject of analysis in this 

article is a question that is not mathematical par excellence—rather phil-

osophical or methodological. The general question about why every math-

ematical problem is solvable has a completely different character to the 

very specific question, for example, why every differentiable function is 

continuous, or why squaring a circle or triscecting an angle is not possible. 

 
10 See, for example, Mancosu (2018), where the reader will find a detailed de-

scription of the problem of mathematical explanations (both in physics and in 

mathematics itself) together with a comprehensive and up-to-date bibliography.  

I thank one of the reviewers for drawing my attention to this. 
11 This monograph is Brumfiel (1979). In another work (Hafner & Mancosu, 

2008), the authors analyse this example in the context of Kitcher’s explanation 

theory. 
12 See special issue 23(2) Philosophia Mathematica (2015). 
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In these cases, we primarily ask about the proof, or possibly its analysis 

and commentary (explanation): what “resources” we use, what assump-

tions are necessary (and what role do they play in the proof), which set of 

concepts we refer to, what is the “conceptual environment”? Ultimately, 

therefore, often the answer can be reduced to analysing some specific 

proof. On the other hand, it is difficult to expect a similar analysis of  

a philosophical thesis—especially in the context of the fact that the Gö-

del’s first theorem seems to contradict this thesis at first glance. 

However, in the context of Gödel’s philosophy of mathematics, I con-

sider using the concept of explanation in this context to be legitimate. 

The concept of solving a mathematical problem—according to Gödel 

exceeds the notion of formal proof. It should be remembered that Gödel 

considered technical and philosophical issues to be intimately connected.13 

It is worth recalling that Gödel believed that philosophical considerations 

could be given a clear form and that (after sufficiently good clarification 

of the concepts) philosophical discussion reaches the level of precision 

which is typical for mathematics (Gödel, 1951, p. 322). In such an opti-

mistic spirit, one can interpret his statement that the design of Leibniz’s 

characteristica universalis was not a pure utopia (Gödel, 1944, p. 101). 

At the same time, he admitted that this is a matter for the future and 

that, for the time being, philosophy has not reached a sufficient degree of 

development (Gödel, 1951, p. 311). He himself admitted that he did not 

give his analyses a sufficiently precise form. 

We talk about explanation in a natural way when we are dealing with 

a phenomenon that we want to describe, understand or just explain. Usu-

ally (and certainly often) this phenomenon is something external, it is not 

a convention, for example physical phenomena are given to us, we are 

confronted with them. Will a similar approach be appropriate for mathe-

matics, which seems to be our creation, though? In the context of Gödel’s 

realistic position, such an approach is natural: mathematics is somewhat 

independent of us, it has an objective character. So it is not surprising 

that we are confronted with objective facts—also concerning mathematics. 

We want to explain these facts. An example of such a fact is the solvabil-

ity of problems. Answering the question: “Why is every well-formulated 

mathematical problem solvable?” is associated with the need to clarify 

 
13 The creator of set theory, Cantor, argued that mathematical and philosoph-

ical problems cannot be separated—and that set theory would give a theological 

interpretation (e.g., Murawski, 1984; Purkert, 1989). 



 THE NOTION OF EXPLANATION IN GÖDEL’S PHILOSOPHY… 93 

 

how to understand the concept of solvability (solution) of a mathematical 

problem. This issue can be “invalidated” by reducing it to a king of tauto-

logical statement: the problem is well-formulated exactly when it is solva-

ble (even if we do not know this solution, or even—potentially—we will 

never know it). And here the discussion ends. However, I believe that 

would not be the right attitude to the matter. The concepts of “well-

formulated problem” and “solution to the problem” are not easily reduci-

ble to each other—the history of mathematics shows clearly that it would 

be an over-simplification. 

The concept of solving a mathematical problem from the point of view 

of ordinary, everyday mathematics has obvious meaning: to “solve the 

problem” is simply to provide the appropriate proof, using standard 

means. Probably for 99.9% of problems encountered by a mathematician 

in practice, this is what is meant by a solution. However, the situation 

becomes more complicated when we reach problems which are undecida-

ble within standard mathematics. The question arises what standard 

mathematics is. The view that standard mathematics can be reconstruct-

ed in ZFC set theory (i.e. Zermelo-Fraenkel set theory with the axiom of 

choice)—and it is the ZFC that sets the framework of the “mathematical 

standard”—is quite common in the philosophy and foundations of math-

ematics. This point of view is very clearly visible in Gödel himself. 

It has been known from the moment of proving Gödel’s first theorem 

that ZFC is an incomplete theory, and the first example of an independ-

ent proposition with a clear mathematical content is the continuum hy-

pothesis.14 It is obvious, therefore, that the concept of solving a mathe-

matical problem must have a different meaning to “deciding it within 

ZFC”—otherwise Gödel’s thesis would be clearly and obviously false. 

Gödel’s position is worth considering in the context of Hilbert’s pro-

gramme and Hilbert’s mathematical worldview. Hilbert was undoubtedly 

a cognitive optimist—he argued that there is no ignorabimus in mathe-

matics and that any well-formulated mathematical problem can be 

 
14 Gödel’s theorems talk about the existence of independent propositions, but 

the construction of Gödel’s sentence does not lead to propositions with a natural 

mathematical content. CH is such a natural sentence which is independent of 

ZFC—and this is a very important result. It is worth adding that the first inde-

pendent propositions from PA with a clear combinatorial content were given only 

in the 1970s (Paris & Harrington, 1977). 
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solved.15 Hilbert’s programme can also be seen as an expression of this 

optimism: he hoped to find a safe foundation for mathematics—which 

would also be strong enough to solve (all) well-formulated problems. 

Tools for this are to be provided by proof theory . Hilbert was, therefore, 

convinced that any mathematical problem could be solved in a literal 

sense (probably closest to the colloquial meaning).16 

A common assertion in the literature is that Gödel’s theorems dealt  

a fatal blow to Hilbert’s programme. This is a suggestive statement, but 

probably Gödel would not agree with it himself, in any case not entirely. 

In his unpublished notes, he notes that interpreting finitist mathematics 

as a purely formal system leads to a dilemma (Gödel, 193?, p. 164). We 

can, therefore, say: 

(i) that not every mathematical problem is solvable; 

(ii) that the syntactic approach to proof does not constitute a proper 

representation of our concept of proof as something that is the 

source of our certainty and allows the solving of mathematical 

problems. 

 
15 The French physiologist, Emil du Bois-Reymond, in 1872, formulated the 

thesis of ignorabimus, according to which science is burdened with internal limita-

tions, and so there must be problems impossible to solve. His brother was Paul du 

Bois-Reymond (an eminent mathematician) who considered this thesis also justi-

fied in relation to mathematics (McCarty, 2004). This brings Kant’s attention to 

the questions agonising people’s minds, which “one cannot suppress, because he is 

asked it by his own nature, but which he cannot answer because they outweigh all 

his potency” (Kant, 1957, p. 7). 
16 Slightly simplifying, it can be said that up to the turn of the 19th and 20th 

centuries there was no concept of formal proof, and mathematical proofs had—

speaking freely—a semantic character. Only with the development of formal logic 

was it possible to formulate the concept of “formal proof” as a specific set of oper-

ations with a formal character (although beliefs of this type—in a yet undefined 

form—were already present in mathematics). A paradigmatic example, which very 

clearly shows the discrepancy between the traditional (semantic) and formal con-

cept of proof, is geometry, which was formalized by Hilbert in Grundlagen der 

Geometrie. The formalistic point of view on geometric proofs obviously assumes 

that there is some established formal system in which these proofs are recon-

structed and that this system encompasses all truths (or “truths”). There is no 

room for intuitive argumentation—for example Hahn was very radical against the 

concept of intuition. 
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Gödel points to the fact that  

number-theoretic questions which are undecidable in a given formalism are 

always decidable by evident inferences not expressible in the given formal-

ism. As to the evidence of these new inferences, they turn out to be exactly 

as evident as those of the given formalism. So the result is rather that it is 

not possible to formalise mathematical evidence even in the domain of 

number theory, but the conviction about which Hilbert speaks remains en-

tirely untouched (Gödel, 193?, p. 164) 

thus advocating the second possibility. It can be said that, in his opinion, 

the syntactic interpretation leads to the loss of important aspects of the 

proof. 

And just seeing this fact allows Gödel to remain a cognitive optimist 

with regard to mathematics. However, he interpreted the concept of “so-

lution to a mathematical problem” in a radically different way from Hil-

bert. According to Gödel, convincing mathematical reasoning can be in-

formal.17 An example is the proposition constructed in the proof of Gö-

del’s theorem: there is no doubt that the proposition “I am unprovable 

within PA” is perceived as true, although of course it is not provable 

within PA. 

So, the notion of “resolving a mathematical problem” will be interpret-

ed by Gödel in a very different way from Hilbert. It can be said that they 

interpret the term “mathematical knowledge” in a different way, or that 

they respond in a different way to the question “what does it mean to 

have mathematical knowledge?” From the point of view of the Hilbert 

programme, obtaining mathematical knowledge is possible thanks to the 

establishment of an unquestionable, finitary fragment of mathematics 

(and then by performing the appropriate theoretical reduction). For Gö-

del, the matter looks completely different—which is of course related to 

the incompleteness theorems. No formal theory (satisfying the relevant 

natural conditions) is a complete theory, and thus it will not be possible 

to solve all mathematical problems in one theory.) The process of obtain-

 
17 It is worth mentioning again that, according to Gödel, it will be possible to 

conduct a philosophical discussion with mathematical accuracy (the condition is  

a good explanation of concepts; Gödel, 1951, p. 322). Wang cites Gödel’s opinion 

that a precise metaphysical doctrine will be formulated in the future. Its absence 

results from the erroneous way of practising philosophy (and theology) as well as 

the prevailing scientistic superstitions (Wang, 1987, p. 159). 
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ing mathematical knowledge goes beyond formal procedures, and mathe-

matical argumentation is not reducible to the concept of “proof in theory 

T”. The proofs that we know from mathematical practice, of course, are 

not formal in nature: rather, they consist of convincing arguments in 

which an intuitive understanding of mathematical concepts is inevitably 

present—not only formal transformations. A spectacular example is the 

proof of Fermat’s theorem—it is hard to imagine what it would look like 

in a fully formalized version, but it certainly would not be readable for 

us.18 

The central concept in Gödel’s philosophy of mathematics is mathe-

matical intuition—a kind of intellectual ability to recognize mathematical 

truths, that goes beyond the mechanical manipulation of symbols. In this 

context, it is worth mentioning the important work of Turing (1939). 

Turing draws attention to the fact (in the context of Gödel’s results) that 

we are able to see the truth of unprovable statements in a given formal-

ism. In his work, he analyses the problem of the whole system of increas-

ingly stronger logics, in which it will be possible to solve ever-wider clas-

ses of mathematical problems—which can also be understood as a tech-

nical equivalent of Gödel’s idea going beyond the given formal system.19 

Regardless of how we are going to understand the concept of mathemati-

cal intuition, there is no doubt that it cannot be mechanical—and thus 

cannot be “imitated” in the standard model of the Turing machine. How-

ever, it can be argued (e.g., Hodges, 2013) that the concept of the oracle, 

introduced by Turing, is the formal equivalent of cognitive activities that 

go beyond mechanical procedures. Turing does not analyse the nature of 

the oracle in more detail, limiting himself to the statement that it cannot 

be a machine. It can, therefore, be said that the informal, intuitive com-

ponent of the activity of the mathematician has been “incorporated” into 

the technical definition here. 

There is a tension here between what we would call a “mathematically 

convincing argument” and its formal paraphrase (or perhaps: its explica-

 
18 An interesting example of a proof that is short, understandable and fully ac-

ceptable is given by Boolos (1987). This is a proof in second order logic—but the 

formalization of this proof in first order logic would be “astronomical” in length. 

The problem of formalizing this proof in Mizar is the subject of analyses in the 

work of Benzmüller and Brown (2007). I thank one of the reviewers for drawing 

my attention to this issue and for the bibliographic suggestions—as well as for 

suggestions regarding Turing’s work. 
19 In Marciszewski’s essay (2018) this issue is discussed more comprehensively. 
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tum in the form of the concept of formal proof). The formalistic position 

(in the wide sense) reduces the notion of a mathematically correct argu-

ment to the notion of a formal proof in the relevant theory T. However, 

Gödel’s position is completely different—from his point of view, well-

formulated mathematical problems are not problems that are solvable 

within some specific theory T. Rather—freely speaking—for each well-

formulated mathematical problem one can formulate the relevant theory 

T that will solve it. And, of course, it is not a trivial claim that if we 

have a proposition φ independent of the theory T, then within the theory 

T + φ (i.e., T with φ added as a premise), this problem will be settled. 

The point is, of course, that it is possible to search for natural, mathe-

matically justified theories T*, being extensions of T—and resolving our 

(previously) undecidable propositions. 

It is worth mentioning the discussion between Gödel and Zermelo re-

garding, inter alia, the issue of solving mathematical problems. 20  In  

a letter to Gödel of 21st September, 1931, Zermelo opposes the thesis that 

any mathematical notion can be defined by means of a finite series of 

symbols—he calls this conviction a “finitist prejudice”. He even claims 

that Gödel’s results express an obvious fact: if only countably many sen-

tences can be defined in a formal language, and there are uncountably 

many truths, then obviously there must be unprovable truths. It can be 

argued that Zermelo underestimated the importance of Gödel’s results 

and did not fully understand the technical subtleties. Gödel responds to 

Zermelo’s letter (in a letter dated 12.10.1931), explaining what the es-

sence of his proof consists of—and in particular, emphasizing that what is 

relevant are statements expressible in a given system, but unprovable in 

this system, and at the same time provable in a more powerful system. 

Zermelo interprets the use of a stronger system as a modification of the 

concept of proof itself. He argues that providing proof involves making 

the proved sentence obvious, which is achieved by formulating a suitable 

set of propositions. Zermelo poses a question about what this obviousness 

is—and at the same time formulates the hypothesis that in a suitable 

system every mathematical problem is solvable (letter to Gödel from 

29.10.1931). The correspondence did not go any further, however, it is an 

interesting testimony to the early reception of Gödel’s results. Another 

 
20 I thank one of the reviewers for drawing my attention to this issue, and for 

pointing out the work of Ebbinghaus, Fraser, Kanamori (2010), in which (on 

pages 482–501) the correspondence cited is included. 
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interesting point is the issue of problem solving: Gödel, being aware of the 

existence of metamathematical constraints, believes that it will be possi-

ble to establish new axioms that allow for the resolution of subsequent 

problems. On the other hand, according to Zermelo, these limitations are 

an obvious defect of the finitist systems, and mathematical reasoning 

should be reproduced in infinitary systems. This is in accordance with his 

well-known statement that the proper logic for mathematics is infinitary 

logic.21 

3. THE EXAMPLE OF THE CONTINUUM  H YPOTHESES 

Gödel distinguished between objective mathematics (as a set of truths 

about the mathematic universe) and subjective mathematics (i.e., that 

which is known to us). His realistic position assumed that the task of the 

mathematician is to search for a description of mathematical reality—

which is objective and exists independently of us. Formal systems de-

scribe it only partially—and of course we cannot stop at one particular 

system as the final set of truths. Rather, it is necessary to analyze math-

ematical concepts (in particular—the concept of a set) so as to be able to 

justify new axioms—which will allow for the resolution of subsequent 

open problems. However, in the case of arithmetic itself, informal reason-

ing convinces us of the truth of, e.g., Gödel’s proposition “I have no proof”, 

while mathematical practice and our beliefs about arithmetic lead to the 

acceptance of Con(PA). But it would be difficult to give that type of 

natural and obvious intuitive argumentation in the case of propositions 

independent of set theory. 

In search of an explanation of the solvability of any well-defined 

mathematical problem it is good to refer to a specific example—and in 

this article it will be the continuum hypothesis (CH), which is a paradig-

matic example of a sentence independent of ZFC. 22  ZFC imposes few 

limitations: there are many propositions of the type “the value of the 

 
21 A very interesting description of Zermelo’s infinitary logic programme can 

be found in Pogonowski’s work (2006). 
22 The continuum hypothesis is that the power of the set of real numbers (i.e. 

the power of a continuum) is the smallest uncountable cardinal number, i.e. 1. 

In another formulation: each infinite subset of R is either countable or equinu-

merous with R. The independence of CH from ZFC was proven by Gödel and 

Cohen: Gödel showed its consistency with the ZFC axioms, and Cohen in 1963 

the consistency of its negation. 
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continuum is ” that are consistent with ZFC.23 However, despite for-

mal independence, one can ask whether there are any convincing argu-

ments that would allow to assign a particular value to the continuum—

and above all, whether the continuum problem is a well-posed mathemat-

ical problem. 

In one of his best-known articles, Gödel analyses the continuum hy-

pothesis (Gödel, 1964). He regards it as an objective, well-formulated 

question about mathematical reality.24 It is obviously unprovable in ZFC, 

but this simply results from the weakness of this theory. For objective 

mathematics—i.e. all unconditionally true propositions—is one thing, and 

subjective mathematics: all probative propositions in a given formal theo-

ry, is another (Gödel, 1951, p. 305). He himself leant towards the thesis of 

the falsity of CH, pointing to its paradoxical consequences (Gödel, 1964). 

However, his views on this matter are not widely accepted. Gödel was, 

therefore, convinced that it would be possible to find axioms which will 

determine the value of the continuum. As it is known, the axiom of the 

constructability V = L implies CH (and also the generalized continuum 

hypothesis). V = L might be viewed as minimalistic (the universe of col-

lections is “narrow”). So Gödel assumed that it would be possible to prove 

CH from some axiom of a maximalist character, in a sense opposite to  

V = L (Gödel, 1964, p. 266). In a certain well-defined sense, large cardi-

nals axioms can be considered to be such maximalist axioms—and here 

Gödel hoped to find a solution. He was aware that strong axioms of this 

type would be needed, and that Mahlo numbers relatively low in the in-

finity hierarchy would not be sufficient.25 

 
23 There is a well-known theorem that shows how “strangely” the power of 

cardinal numbers can behave. Easton showed that for any F function meeting two 

conditions: (1) F is a non-decreasing function from the class of regular cardinal 

numbers in cardinal numbers; (2) for any Ƙ : Ƙ < cf(F(Ƙ)); a model for set theory 

can be constructed in which for any regular cardinal number Ƙ, 2Ƙ = F(Ƙ) (Easton, 

1970). In particular, the continuum (that is 2ω) can be large. 
24 Arguments in favour of the thesis that the continuum hypothesis is a well-

formulated mathematical problem, not just a metamatematical one, are formulat-

ed, for example, by Hauser (2002). 
25 Gödel’s article (1964) is not the only (or the first) place where he expressed 

such opinions. In a lecture at Princeton in 1946 Gödel characterized “strong infini-

ty axioms” as an assumption which, in addition to having a specific formal struc-

ture, is “is also true” (Gödel, 1946, p. 151). He also expressed a very optimistic 

conjecture that “some completeness theorem would hold which would say that 
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It turned out that this this strategy would not bring success in solving 

the continuum problem: the results, according to which various strong 

large cardinal axioms are consistent with both the continuum hypothesis 

and its negation, are known (Levy & Solovay, 1967). Let us add here that 

Gödel himself tried to formulate another type of axiom that would solve 

this problem (Gödel, 1970a; 1970b).26 

However, regardless of the fact that studies concerning large cardinals 

did not solve the continuum problem, the very idea of seeking new axioms 

became an inspiration to researchers, and, the Gödel programme is often 

referred to in this context. Of course—such axioms could not be ad hoc, 

but they would result from analyses regarding our understanding of the 

concept of the set and our vision of the mathematical universe. The dis-

cussion on this subject is lively—however, even a brief review definitely 

goes beyond the scope of this article.27  

So when it comes to the explicatum defined above (“solvability of  

a mathematical problem”), one can be tempted to characterize it as find-

ing the appropriate formal theory T—which is an extension of ZFC—

based on natural, acceptable axioms, leading to the formal settlement of 

the problem P within T. There would be two components here:  

• Conceptual-analytical phase: the search for appropriate natural, ac-

ceptable axioms—and the formulation of the relevant theory T. 

• Technical phase: the resolution of P within T (i.e., standard math-

ematical work—perhaps very difficult).28 

 
every proposition expressible in set theory is decidable from the present axioms 

plus some true assertion about the largeness of the universe of all sets” (Gödel, 

1946, p. 151). 
26 According to commentators, Gödel’s reasoning was mistaken (cf. Ellentuck, 

1975; Solovay, 1995). 
27 We may mention, for example: Feferman, (1996; 2000), Friedman (2000), 

Maddy (1988a; 1988b; 1993; 1997), Steel (2000). Woodin’s works (1999, 2001) 

contain technically very complex methodological analyses, based on which it can 

be proven that the continuum value is 2. Of course, they are the subject of 

discussion and controversy, so it cannot be argued that the continuum problem 

has been solved. 
28 Regarding the continuum hypothesis, he stated: “When the concept of set 

becomes clear, even when we find satisfactory infinity axioms, there will still be  

a technical (i.e. mathematical) problem to resolve the continuum hypothesis based 

on axioms” (Wang, 1996, p. 237). 
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What is the philosophical background for the belief that this is always 

possible and that every well-defined problem is solvable? Two important 

aspects can be identified here. One would be termed metaphysical, and 

the other methodological. Speaking of the metaphysical aspect, I mean 

that Gödel’s realistic position presupposes the existence of an objective, 

mathematical universe with a certain nature. Gödel believed that the 

universe has a set-theoretic character—and that there is one, objective 

universe in which all mathematical propositions are interpreted, and 

moreover every proposition is either true or false in it. There are, there-

fore, no propositions of undetermined logical status, no “shaky” proposi-

tions.29 Gödel’s thesis would, therefore, have a metaphysical foundation in 

a specific vision of the mathematical universe.30 

Of course, belief in the existence of one objective (though unknown) 

mathematical universe does not automatically give any clues as to what 

are the solutions to open mathematical problems. After all, it would be 

possible to accept the thesis that the mathematical world has an objective 

and fixed character, but that it is unknowable (that is, the ignorabimus 

thesis would be true, against the optimism of Hilbert or Gödel). And here 

we touch on the methodological aspect: the way in which we can seek 

answers to mathematical questions that are ex definitione unsolvable 

within the available, i.e. accepted, standard theory (e.g. ZFC). This is 

possible by establishing new, credible axioms. Gödel was convinced that 

our analysis of the concept of set would allow the establishment of such 

axioms. This is an expression of a specific epistemological vision: accord-

 
29 It would be possible to think this if one adopted the concept of so-called 

multiverses—i.e. a realistic concept, according to which mathematical reality 

exists, but it is not a “uniform” mathematical universe, rather the entire “galaxy” 

of set theoretic universes that implement different concepts of set (e.g. Hamkins, 

2012). In such a situation, it would not make sense to say that e.g., the continu-

um hypothesis has a logical value: in different universes the continuum could take 

different values. 
30 This article is not of a historical-exegetical nature, but it is worth noting 

that it seems that Gödel’s opinion has undergone some evolution of view. He 

writes that “it is very plausible that with [V = L one is dealing with an absolutely 

undecidable proposition, on which set theory bifurcates into two different systems, 

similar to Euclidean and non-Euclidean geometry” (Gödel, 1939b, p. 155). Thus, 

he explicitly allows for the existence of absolutely insoluble problems; similar 

theses can be found in another text (Gödel, 193?). Undoubtedly, he later claimed 

that V = L should be rejected. 
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ing to Gödel, we have the ability to analyse concepts and see these truths. 

He regarded the phenomenological method as promising, and wrote about 

it explicitly in one of his works (Gödel, 1961; cf. also e.g. Tieszen, 1998).31 

4. CONCLUSIONS 

Gödel understands the concept of the solution of mathematical prob-

lems much more broadly than as the providing of mathematical proof. 

Formulating such a proof is obviously a necessary condition (and in the 

case of the vast majority of standard mathematical problems—sufficient), 

but there are also mathematical problems for which the formulation of  

a proof is only the second stage. The first is to find reliable (true!) as-

sumptions on the basis of which this proof can be carried out. Obviously, 

these assumptions must go beyond the standard set theory, i.e. ZFC. 

What though is the explanation for this phenomenon of problem solv-

ing? The first assumption on which Gödel’s view is based is metaphysical 

realism: there is a mathematical universe, it is objective, independent of 

us—and each mathematical proposition has a logical value. The second 

assumption is a kind of epistemological optimism: we are equipped with 

sufficiently good cognitive means to gain insight into this universe.  

The use of the notion of explanation, which is characteristic of empiri-

cal sciences, is justified: in the objectivistic vision of Gödel, we are dealing 

with facts that are independent of us. One of these facts is the solvability 

 
31 It is worth mentioning here the “second pillar” of learning mathematical 

truths—they can be methodological arguments that can be symbolically labelled 

“fruitfulness”. This is a very broad issue that I shall not analyse here. It is worth 

remembering that Gödel himself very clearly emphasized the importance of this 

aspect, as evidenced by the following quote: “a probable decision about its [a new 

axiom—K.W.] truth is possible also in another way, namely, inductively by study-

ing its ‘success’. Success here means fruitfulness in consequences, in particular in 

‘verifiable’ consequences, i.e., consequences demonstrable without the new axiom, 

whose proofs with the help of the new axiom, however, are considerably simpler 

and easier to discover, and make it possible to contract into one proof many dif-

ferent proofs. […] There might exist axioms so abundant in their verifiable conse-

quences, shedding so much light upon a whole field, and yielding such powerful 

methods for solving problems (and even solving them constructively, as far as 

that is possible) that, no matter whether or not they are intrinsically necessary, 

they would have to be accepted at least in the same sense as any well established 

physical theory” (Gödel, 1964, pp. 113–114). 
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of all well-formulated mathematical problems—and this fact requires 

explanation. 
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S U M M A R Y : The description of data and computer programs with the use of 

numbers is epistemologically valuable, because it allows to identify the limits of 

different types of computations. This applies in particular to discrete (digital) 

computations, which can be described by means of computable numbers in the 

Turing sense. The mathematical fact that there are real numbers of a different 

type, i.e. uncomputable numbers, determines the minimal limitations of digital 

techniques; on the other hand, however, it points to the possibility of the theoret-

ical development and physical implementation of computationally stronger tech-

niques, such as analogue-continuous computation. The analyses presented in this 

article lead to the conclusion that physical implementations of unconventional 

(non-digital) computations require the occurrence of actually infinite quantities in 

nature. Although some arguments of theoretical physics support the physical 

existence of such quantities, they are not definitive. 
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From the point of view adopted in this work, computational objects, 

in particular computer programs, mediate between the mathematical 

sphere of numbers and physical reality. For example: a sound playing 

program operates on numerical representations of acoustic waves, and its 

instructions cause, due to the appropriate design of the computer, real 

physical vibrations of air molecules. What is more, this and any other 

program can be analysed on two levels, i.e. as an object of two types: on 

the one hand as a series of symbols that can be reduced to numbers, and 

on the other—as a strictly defined system of physical states of the ma-

chine (which, after running the program, cause regular changes of its 

subsequent states).2 Due to the indicated correspondence, many comput-

er-related issues can be resolved by referring to the properties of num-

bers—numbers that according to a particular, machine’s specific, model of 

computation (e.g. digital or analogue) correspond to the data, texts and 

results of the programs. 

In this work I shall focus on programs for digital machines. They are 

described theoretically by means of the Turing model of computation 

(universal Turing machine), and speaking “numerically”, using computa-

ble numbers in the sense of Alan Turing. Referring to certain properties 

of computable and uncomputable numbers, in particular the fact that the 

digital representations of uncomputable numbers are actually infinite,  

I shall determine the theoretical reasons for the existence of computation-

al limitations of such programs. I shall also discuss the possibilities of 

overcoming these limitations by means of computational techniques that 

(theoretically) allow the processing of signals described using uncomputa-

ble numbers in the Turing sense. The presented text is for the most part 

a review. However, it contains a number of the author’s interpretations of 

the results of computer science and its mathematical foundations research 

(e.g. results of A. Turing and G. Chaitin), in particular interpretations 

regarding the infinite nature of uncomputable numbers and codes consid-

ered in theoretical computer science. 

 
2 Some philosophers of computer science speak directly—adopting an ontologi-

cal rather than epistemological attitude—about the dual, i.e. abstract-physical, 

nature of computer programs (Moor, 1978; Colburn, 2000; see also Angius  

& Turner, 2013). 
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1. N UMBERS, COMPUTING AND N UMERICAL CODING 

The most important, and oldest, idea that resulted in the creation of 

computers and then computer science is the idea of numerical coding.3 

Behind it is the belief that the world of numbers (maybe even only natu-

ral ones) and relatively simple operations on them (such as comparing, 

adding or dividing) is rich enough to represent various aspects of the real 

world. 

In modern computing, numerical coding, understood as describing da-

ta processed by computers using numbers, 4  is a common and perhaps 

theoretically necessary activity.5 It is already present at the level of initial 

formalization of some tasks, when the objects appearing in these tasks 

(e.g. text, sound or graphic) are described by means of numbers, specially 

selected and included in appropriate structures. For example: characters 

processed by text editors are assigned specific numbers (according to e.g. 

ASCII code), while images displayed on monitors are often coded in the 

form of a sequence of numbers that determine the coordinates and colours 

of points on the raster matrix. At the lowest level of intra-computer 

structures, the relevant codes are created automatically, thanks to spe-

cially designed programs (e.g. compilers). Most importantly, however, in 

 
3 Its oldest manifestation was probably the philosophy of the ancient Pythago-

reans, which postulated reducing all fragments of reality to some kind of numbers 

(summarized in the short slogan that “everything is a number”). In modern philo-

sophical thinking, especially in the context of computer science philosophy, Py-

thagorean ideas are revived, which some call neopythagoreanism. This is due to  

a kind of feedback: Pythagorean ideas contributed to the emergence of computer 

science, and its successes, among others in the field of simulation of physical phe-

nomena by means of operations on computer-represented numbers, strengthen the 

Pythagorean view of the world (Krajewski, 2014). 
4  In the computer science context, the term “describing data processed by 

computers using numbers” usually has a syntactic rather than an abstract sense. 

This means that it is about coding data using symbolic (and physical) representa-

tions of numbers, e.g., zero-one sequences. In the present text I shall also refer to 

the abstract (strictly mathematical) properties of numbers and their sets, such as 

the continuity of a set of real numbers. In the case of insufficient context, however, 

I shall signal whether in the given place it is about the abstract or syntactic di-

mension of the concept of number (writing e.g. that it is about decimal expansion 

of a number). 
5 See the online discussion on the Cafe Aleph blog that resulted from the crea-

tion of this work (Stacewicz, 2018b). 
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mathematical terms, aside from the physical design of the computer and 

the physical processes of signal processing, they can be represented nu-

merically, for example in binary form. 

The last five words of the previous paragraph indicate that I under-

stand the term “numerical coding” widely in this work. In particular,  

I understand it more broadly than the term “digital coding”, which I re-

serve for the way of representing information in digital computers, which 

are machines with discrete states operating on binary signals. I take the 

broad term “numerical coding” to be reasonable, because computer science, 

generally conceived, considers a wider class of machines than the digital. 

This broader class includes analogue circuits that allow (at least theoreti-

cally) operation on continuous signals described by real numbers,6 as well 

as quantum computers for which the basic unit of information is the q-bit, 

mathematically defined using complex numbers.7 

The concept of numerical coding is closely related to the key computer 

science concept of computing. In the context of problem solving, it means 

the mechanical implementation of the process of determining the value of 

the function, which assigns its specific solutions to the input of the prob-

lem (solutions for specific data).8 If the data are numerically encoded, 

then the arguments and values of this function are those types of num-

bers (e.g. natural or real), which are allowed by the coding method ap-

propriate for a given machine. This is determined by the appropriate 

model of computation (e.g. digital or analogue). Let us also say that the 

computer description, not purely mathematical, of the calculated function 

 
6 See works by Shannon (1941) and Rubel (1993). 
7  I also use the term “numerical coding” in another work (Marciszewski  

& Stacewicz, 2011, pp. 75–77). A similar conceptual convention is found in Kra-

jewski, who does not use the term “numerical coding”, but distinguishes digitiza-

tion as one of the types of coding (although the most common), fundamentally 

different from data coding in analogue circuits processing signals described by real 

numbers (Krajewski, 2014). 
8 Historically, the first mature considerations for solving problems using calcu-

lations (computations), i.e. mechanical operations on physical equivalents of num-

bers, are due to G.W. Leibniz. For the modern concept of computing, the follow-

ing ideas and achievements are particularly important: the design of a calculating 

machine (performing the four basic arithmetic operations), the invention of  

a binary arithmetic system, the design of a machine operating on binary encoded 

numbers, as well as the concept of a universal symbolic language (lingua charac-

teristica) and coupled with it a reliable calculus (calculus ratiocinator). See the 

work by Trzęsicki (2006). 
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is either the program text (if the machine accepts programs written in  

a certain programming language) or the connection diagram between the 

elementary systems of the machine (if the machine is physically pro-

grammed like analogue systems or the first digital computers). 

Since the vast majority of today’s computers perform digital computa-

tions, in the following paragraphs I shall take a closer look at the “numer-

ical” characteristics of the tasks entrusted to them. In particular, I shall 

consider the question as to whether the numerical codes desired in their 

description must be finite, or if sometimes it is necessary to refer to the 

concept of infinite code.9 

At first glance, all the codes involved are finite, and thus reduced to 

natural numbers. This suggests the observation that the data entered into 

the digital computer have a finite representation, and the programs used 

to process them are finite sequences of instructions that, when encoded in 

binary form, can be interpreted as natural numbers. A deeper reflection 

on the functions of digital computers, however, leads to the statement 

that the theoretical analysis of the capabilities of these computers must 

refer to the concept of infinite code (even if such codes cannot be imple-

mented inside real digital machines). Two possible contexts of reference 

should be distinguished. 

First, in the case of many real problems (e.g. in the fields of dynamics 

or mechanics), the results obtained for specific input data can be ex-

pressed in irrational numbers, those with infinite and irregular expansions 

(e.g. decimal). This happens, for example, when a given problem is formu-

 
9 The concept of infinite code—that is, the result of the coding process that 

has (actually) infinite length—is a non-standard concept that goes beyond the 

standard theory of computation, expressed e.g. in terms of Turing machines. 

However, in modern computer science methodology, which also includes some 

non-standard models of computation, this concept is used—e.g. to refer to the 

infinite length of program codes or the infinite tape of the Turing machine, which 

is completely filled with data (Ord, 2002, p. 17; Ord, 2016, p. 146; Mycka & Ol-

szewski, 2015, pp. 58–59). Let us emphasize, however, that this concept makes 

sense when one makes an (even working) assumption of the possibility of going 

beyond the traditional Turing model of computation. The use of the concept of 

infinite code is justified in the present work, because later in it (especially in sec-

tion 4) I shall analyse the possibility of the physical implementation of non-

Turing computations, also those that include infinitistic elements. Regardless of 

this intention, in this section I show how (general) analysis of problems that we 

would like to solve traditionally (i.e. digitally) leads to the necessity of at least  

a critical consideration of non-traditional (i.e. infinite) codes. 
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lated mathematically using a certain equation (e.g. differential) and the 

root of this equation is an irrational number (such as √2, π or e). In this 

case, the result is de facto represented by an infinite number. Let us first 

note, before explaining in more detail in section 3, that the most trouble-

some situation occurs when we deal with this kind of irrational number, 

which is uncomputable in the sense of Turing. Secondly, however, and 

crucial for further analysis, each more complex programming task has an 

infinitystic structure. This means that the set of its initial data, and 

sometimes also the set of its potential results, is unlimited. As a simple 

example, let’s consider the problem of determining the roots of quadratic 

equations ax2 + bx + c = 0, where the range of possible a, b, c coefficients 

to enter is unlimited. In the case of this problem, there is, despite an 

unlimited field, a finite method of finding the x values sought, which is 

the commonly known “delta” algorithm. There is also a finite program 

(many), which for any input data (i.e. a system of coefficients a, b, c) 

allows, in a finite number of steps, the generation of the correct result. 

This program must be treated as a general (computer) solution to the 

problem posed, a solution which corresponds to the finite numerical code 

of the program (in short: a certain number).10 

Unfortunately, for other problems with an unlimited input data do-

main, the numerical code of the general solution—which is a digital rec-

ord of all possible pairs <INPUT, RESULT>, or in other words, the 

function that assigns the results—must remain infinite. This happens 

when there is no finite program to solve the problem. If such a program 

exists, it is a form of encoding the set of the given pairs in the shape of  

a procedure that generates correct results (for all possible input data) 

which is “intelligible” for a digital machine. The code of such a procedure 

corresponds to a natural number (written e.g. as a sequence of zeros and 

ones). If such a program does not exist, it must be assumed that the 

overall solution to the problem corresponds to some uncomputable num-

ber in the Turing sense (i.e. a certain special irrational number with infi-

 
10 Let us emphasize here that, although the question of the infinite domain of 

input data may be irrelevant from the point of view of solving the algorithmic 

task, the fact that this solution applies to an unlimited number of input data 

determines its strength. It is in a way a universal solution (similar to mathemati-

cal theorems, it applies to an infinite number of special cases). In some situations, 

however, the infinite field can lead to trouble—more on this in the main text (see 

also Stacewicz, 2015). 
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nite expansion, which no digital machine can calculate; see further in 

section 2). 

In the context of solving problems by computing that interests us here, 

infinite numerical codes can, therefore, occur at two levels: 1) at the code 

level of the exact individual result, 2) at the code level of the overall 

problem solution. In both cases, it may happen that the appropriate code 

is in the form of an uncomputable number, and then—as we shall see in 

section 3—the method sought to solve the problem lies beyond the limits 

of the possibilities of digital coding (which does not, however, exclude the 

existence of such a method that would be implemented on machines of 

types other than digital). 

2. UNCOM PUTABLE N UM BERS IN  THE TURING SENSE 

The uncomputable numbers highlighted in the title of this article were 

defined by Alan Turing in his work from 1936 entitled On Computable 

Numbers, with an Application to the Entscheidungsproblem. He defined 

them as such irrational numbers, whose decimal representation cannot be 

determined with any given accuracy, by any system for mechanical calcu-

lations, today called the Turing machine.11 In the modern style, we would 

say that these numbers are indeterminate by means of algorithms for 

digital machines, and therefore those for which there are no finite com-

puter programs that allow step by step calculation of the subsequent 

digits of their decimal or other representations (although such representa-

tions are strictly defined, see Stacewicz, 2012). For example: the irrational 

number e does not have the above properties, because it is relatively easy 

to generate successive digits of its expansion by means of a program cal-

culating successive subtotals of the appropriate series (remember that 
 

            ). Therefore, it is not an uncomputable number, alt- 
 

hough it is characterized by irrationality.  

Unlike the irrational number e, uncomputable quantities in the Turing 

sense are defined in a way that excludes the possibility of their successive 

approximation using Turing machines or equivalent computational mech-

 
11 It is worth adding that Turing first gave the exact definition of a set of 

computable numbers (numbers whose decimal notation can be determined defini-

tively or with any given accuracy using a finite program for a Turing machine), 

and then proved the existence of real numbers of another type (see further in 

main text), or uncomputable numbers (Turing, 1936). 
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anisms. This is determined by Turing’s original reasoning, which, after 

defining computable numbers, proved that there are real numbers of an-

other type, and then specified a set of non-computable numbers as the 

complement to the set of computable numbers in the set of real numbers. 

I shall present this reasoning in a sketchy and demonstrative way—

limiting it to real numbers in the range (0,1).12 The starting point of the 

argument is that the result of the operation of each Turing machine for 

specific input data—a machine generating series of digits from the set 

{0,1, ..., 9}—is clearly represented by a certain real number from the 

interval (0,1). It is such a number whose decimal expansion is the same as 

the finite or infinite sequence of digits generated by the machine. 

Due to the fact that each machine, together with the input data, un-

ambiguously defines a unique string of symbols (representing its program 

and the initial content of the tape), each of them can be assigned  

a unique number, and all machines can be set into an infinitely countable 

sequence. According to the order in this sequence, you can then set all 

digit sequences generated by subsequent machines. These sequences form 

an infinite countable set and unambiguously designate concrete computa-

ble numbers in the range (0,1). These are numbers with decimal expan-

sions identical to the subsequent sequences.  

Having the above-mentioned sequence list, one can ask if there is such 

a sequence S on it, that its n-th digit differs (e.g. by 1) from the n-th 

digit of the n-th sequence on the list (if the n-th sequence is long enough). 

The postulated S sequence cannot appear in the list because it differs (by 

at least one number) from each of the sequences in the string. Therefore, 

it differs from any sequence generated by any machine. Therefore, this 

sequence must specify a number from the range (0,1) that no machine can 

generate, i.e. a real uncomputable number (Turing, 1936; Marciszewski  

& Stacewicz, 2011).13 

 
12 In the presented reasoning, Turing skilfully used the diagonal technique, 

which was used for the first time by G. Cantor in proof of the uncountability of 

the set of real numbers. 
13 Let us also note that the procedure of determining the S sequence proposed 

above is inefficient (although theoretically allowed), because due to the insolvabil-

ity of the Turing machine halting problem (in the quoted Turing work we will 

find the appropriate proof), we do not know which of the machines generating the 

sequences on the list stops, and which does not (moreover: in the second case we 

do not know whether the machine head will not “turn” in any cycle and will not 
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The first exact definition of uncomputable numbers of some kind was 

given by the modern mathematician, Gregory Chaitin. These are Omega 

numbers, which for a universal Turing machine of a given type (i.e. ma-

chines with a certain number of states and symbols of the alphabet) de-

termine the probability that a randomly selected program of operation of 

such a machine will stop.14 Let us also clarify that by the program of 

operation is meant here the initial content of the universal machine tape, 

which consists of a properly coded program of the simulated machine and 

its initial data.15 It refers, therefore, to the input data of the universal 

machine, which however strictly define its subsequent activities (the uni-

versal machine implements the program of the concrete machine for the 

specific data). Since the construction given by Chaitin is quite complex 

and serves to determine the formula for the mentioned probability 

(Chaitin, 1993; Chaitin, 2005), I propose here a conceptually simpler defi-

nition of another uncomputable number. I shall keep Chaitin’s original 

idea, which refers to the issue of the halting of Turing machines.16 

The starting point of the definition is to prepare an ordered list of 

programs for the universal Turing machine of certain type. As in the case 

of Chaitin’s construction, by program I understand the initial content of 

the universal machine tape (including the program code of a specific ma-

chine and its input data). Since the aforementioned list is countably infi-

nite,17 the programs on it (with data) can be numbered as p1, p2, p3 etc. 

 
change the above-mentioned nth digit). We shall refer to the issue of halting 

further by defining an uncomputable number L. 
14 The subject literature often mentions one Omega number (see, e.g., Trzęsic-

ki, 2006a, pp. 125–126). However, this is confusing, because for each universal 

Turing machine (there are infinitely many such machines) there is a separate 

Omega number, having a different symbolic representation. 
15 In addition to the program thus understood, each universal machine has its 

unique (defining it) “executive” program, which determines the way of implementa-

tion of each program placed on the tape (it regulates, among other things, how the 

machine head moves between the simulated machine program code and its input). 
16 Remember that this issue is expressed by the question about the existence of 

such a (diagnostic) Turing machine, which for each other Turing machine and each 

of its input data would be able to unequivocally decide whether this particular 

machine will stop working for this particular input or whether it will work forever. 
17 It is infinite, because due to the infinite length of the universal machine 

tape, there are infinitely many input data that can be put on it (despite the finite 

number of alphabet symbols and the finite number of states of the simulated 

specific machines). 
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Referring to this list, one can define the following binary number L in the 

range (0,1) : L = 0, b1b2b3 ..., where bit bi = 1 if the pi program stops, and 

bi = 0 if the pi program does not stop (where i ∈ N).18 

Note that the number L is strictly defined—because programs that de-

fine its subsequent bits either stop or fail. However, it is not computable, 

i.e. algorithmically determinable—because determining the values of sub-

sequent bits the issue of halting cannot be algorithmically resolved in 

finite time. This example again shows that Turing’s uncomputability is 

strongly associated with infinity. The number L has an infinite expansion, 

which is indeterminate by the finite program (indeterminate in the sense 

that the calculation of some of its digits would take infinitely long).  

Developing the “infinity thread” in a more general context, it must be 

stated that all numbers that are uncomputable in the Turing sense are 

characterised by actual infinity (not potential19). Each of their symbolic 

representations (e.g. decimal) contains an infinite number of digits, which 

must be understood as an infinite whole, impossible to gradually generate, 

digit by digit, using any finite program (for a digital machine).20  

 
18 As Chaitin notes, the issue of choosing the right list, i.e. how to order the 

set of programs, is extremely important. It should be emphasized that it is im-

portant not only in the case of defining Omega numbers (in their case Chaitin 

gave a special way to specify the list), but also in the definition of another type of 

uncomputable numbers (Chaitin, 1993). One of the anonymous reviewers of this 

paper rightly stated that the type of the number L specified in the main text 

(computable or non-computable) depends on how the pi program set is ordered 

(i.e. how the list is compiled). In particular: computable numbers (such as 2/3) 

can be obtained for certain orders. To solve this problem, the above-mentioned 

definition of Chaitin’s list can be adopted. Notwithstanding the above explana-

tions, it should be emphasized, however, that the number L is defined in such  

a way that even if the list in its definition causes its computability, this definition 

alone does not allow one to state that computability on the basis of any opera-

tions implemented by Turing machines. This is because the basis of the definition 

is the halting problem, and its undecidability makes it impossible to determine (in 

advance) which programs on the list stop and which do not. In short: perhaps for 

a certain list of programs the number L is computable, but we, using only the 

Turing machine operations, are unable to determine it. 
19 For the distinction between potential and actual infinity, see Murawski (2014). 

Also worth noting is the text by Witold Marciszewski on infinity (2012). 
20 The actual infinity of an uncomputable number is well illustrated by the 

following metaphor: if some super-algorithmic Divine Mind wanted to share with 

us the knowledge of an uncomputable number X, it would have to reveal it to us 
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Let us finish by explaining that the class of uncomputable numbers in 

the sense of Turing is extremely extensive, because it has the cardinality 

of the c o n t i nuum , and therefore is equinumerous with the set of real 

numbers. In contrast to it, the class of computable numbers, i.e. those 

that are algorithmically determinable using Turing machines, has the 

cardinality a l e ph - nu l l , i.e. is equinumerous with the set of natural 

numbers.21 This disproportion between the infinities of sets of computable 

and uncomputable numbers seems surprising: everything that Turing 

machines can generate turns out to be “a drop in the ocean of uncomput-

ability.” 

3. M IN IM UM  LIM ITATIONS OF REAL D IGITAL CODES 

By r e a l  d i g i t a l  c od e s  I understand here the numerical codes of 

the actual programs that can be physically implemented, which programs 

in a finite way represent functions that associate input data and results of 

computations. Due to the computational equivalence of (idealized) digital 

computers and Turing machines,22 the results of these computations are 

always digital representations of some computable numbers in the Turing 

sense (or fragments of them, if the number has an infinite expansion). 

Due to this equivalence, the general limitations of real digital codes—

limitations that must be met by all programs for all digital machines—

can be determined within the Turing model of computation, which is in 

 
in its entirety, an infinite whole, but would not be able to provide a concise algo-

rithmic rule describing it in a finite way. This is a casual paraphrase of Chaitin’s 

remarks (Chaitin, 1998, pp. 54–55). I write more about the difference between the 

types of infinity of the computable numbers (potential infinity) and the uncom-

putable numbers (actual infinity) in another work (Stacewicz, 2018a, pp. 180–181). 
21 This is due to the fact that all machines that generate unique strings of 

symbols that make up symbolic representations of computable numbers can be 

numbered and set into an infinite string. The set of uncomputable numbers must 

have the cardinality of the continuum, because it is defined as the difference of 

the set ℝ (with the cardinality of the continuum) and the set of computable 

numbers (with the cardinality aleph-null). 
22 More precisely, each program of a certain digital machine (regardless of the 

technical details of its design) can be translated into the Turing machine program, 

in particular the universal machine program. Despite this, due to the purely phys-

ical limitations of real digital machines (not ideal, but real), not all tasks “feasible” 

for a UTM are feasible for them. This topic will be developed further in the main 

text of this section. 
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the form of an abstract universal machine, called the universal Turing 

machine (UTM).23 More precisely, if the solution to a certain problem 

cannot be coded in the form of a program for a UTM, it also cannot be 

considered an executable procedure for a certain digital machine.24 Which 

does not mean—we must add—that it cannot be specified in the form of 

a procedure for a machine of another type, e.g. analogue. 

From the point of view of these considerations, the key role here is 

played by the issue of determining uncomputable numbers, and more 

precisely their subsequent digits, which constitute their symbolic repre-

sentations. Such numbers have correct definitions, their subsequent digits 

(e.g. 0 and 1) are precisely defined, and yet there is no program for the 

Turing machine that would allow such numbers to be determined in any 

finite length of time. Thus, the functions corresponding to individual un-

computable numbers—functions that bind the given accuracy (e.g., the 

number of the last desired digit of the decimal number expansion) to the 

corresponding fragment of the number—determine the limits of the digi-

tal coding. If the general solution to a given problem is reduced to this 

kind of function, then this solution cannot be digitally coded. To put it 

another way: if, for a certain problem P, each numerical code of a func-

tion that binds its input data and results corresponds to a certain uncom-

putable number, then this problem lies (then and only then) beyond the 

limits of the possibilities of digital coding. In this way, i.e. by explaining 

“numerically” the issue of computational unsolvability of some problems, 

we gain some new insight into both the reasons for, and the hypothetical 

possibilities of, overcoming Turing’s uncomputability. 

Limitations set by uncomputable numbers, and more precisely by the 

functions associated with them, generating their symbolic representations, 

should be treated as minimum limits, independent of the physical charac-

teristics of digital machines. This statement results from the fact that the 

UTM machine is computationally equivalent not to physical digital ma-

chines, but to theoretical computers, with infinite memory resources and 

 
23 Let us remind that a universal Turing machine is a machine that, thanks to 

a specially selected program defining it, is able to simulate the operation of any 

particular Turing machine (Harel, 2000, p. 252). 
24 A wide range of uncomputable problems in the Turing model are described, 

for example, by Harel (2000, pp. 201–224). Gödel also mentions some important 

meta-mathematical problems of this type (1995/2018, p. 13). 
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an arbitrarily long, although finite, operating time. 25  It means that  

a UTM machine is able to “perform” more tasks than physical digital 

machines of a certain type (e.g. machines with a maximum RAM of  

8 MB). Hence the conclusion that the limitations of real physical comput-

ers and the digital codes controlling them are in fact greater than the 

limitations of idealized machines, i.e. Turing machines. The limitations of 

the latter are therefore the “mathematical minimum”, covering all digital 

computers. 

Let’s return to the properties of uncomputable numbers. Remember 

from section 2 that all representations of such numbers are characterized 

by infinity. These representations are in fact infinite wholes—that is, 

infinite sequences of symbols, which are not determined by any finite rule, 

having the form of a finite program for a Turing machine. From this per-

spective, the actual infinity of the numbers that would have to code the 

solutions of some problems should be considered the mathematical “cause” 

of Turing’s uncomputability of these problems. 

Due to the previously indicated correspondences between specific 

numbers of this type and digitally uncomputable problems (e.g. the pre-

viously determined number L corresponds to the halting problem), and 

the fact that the set of uncomputable numbers has the cardinality of the 

c on t i nuum , the conclusion is that uncomputable problems in the Turing 

sense are infinitely many, and moreover, that there are many more than 

there are computable ones (whose set, like the set of computable numbers, 

has the cardinality aleph-null). This is a conclusion, not a supposition, 

because each uncomputable number has at least one unsolvable problem, 

consisting in determining any fragment of its digital representation. 

It can, of course, be argued that the infinite continuum of digitally un-

computable problems contains a relatively small number of practically 

relevant issues. For example, even the halting problem—as it concerns all 

Turing machines, and not just some of their highlighted subsets—can be 

considered too wide and thus insignificant from a practical point of view. 

However, the extremely practical point of view seems illusory. It is diffi-

cult to be sure that solutions to problems that do not translate directly 

into applications do not conceal practically significant consequences 

 
25 In the UTM model, an infinite tape is responsible for the potentially infinite 

memory resources and potentially infinite operating time (Stacewicz, 2018a). 
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(which at a given stage of the development of science and technology we 

do not yet know).26 

Before moving on to the next section, devoted to alternative tech-

niques to Turing computations, it is worth paying attention to one more 

feature of uncomputable numbers. In relation to the set of numbers avail-

able for Turing machines, i.e. computable ones, they are elements that, 

going beyond this set, allow it to be “expanded” to the form of a set of 

real numbers. This in turn suggests that there may be such computation-

al techniques that refer to the theory of real numbers (and further: to 

some results of mathematical analysis), and, in the implementation layer, 

allow for operation on the physical equivalents of some or all real num-

bers. We’ll look at the possibilities of such techniques in the next section. 

4. CAN THERE BE EFFECTIVE IM PLEMENTATION OF  

N ON -D IGITAL CODES? 

Due to the properties of digital computers,27 all codes representing da-

ta, programs and the results of these devices are subject to certain mini-

mum restrictions, determined within the Turing model of computation. In 

fact, these restrictions consist in the inability to “go beyond” a set of 

computable numbers in the sense of Turing. 

In connection with the above, the question arises as to whether there 

are any computing machines, other than digital, that would be able to 

operate on real, non-computable codes, i.e. certain physical representa-

tions of non-computable numbers in the Turing sense. If such machines 

actually existed, they could, firstly, solve problems whose only available 

general solutions are encoded with uncomputable numbers, and secondly, 

they could generate results that are such numbers (or represented by 

them). The computing power of such machines would, therefore, be great-

er than the power of digital devices. 

 
26 To justify the belief in the practical significance of any uncomputable prob-

lems, one can rely on somewhat breakneck but suggestive reasoning by analogy. 

Well, just as in the set of real numbers, you cannot omit (without prejudice to 

their mathematical utility) uncomputable numbers (because their existence gives 

the set R the property of continuity), so in the set of all problems you cannot 

miss out the set of uncomputable problems. This reasoning would require further 

development, which is why we only signal it in the footnote. 
27 Remember that this is about computational equivalence of (idealized) digi-

tal computers and Turing machines. 
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From the point of view of pure theory, such machines exist, and the 

general principles of their operation are determined by various models of 

h y pe r c ompu ta t i o n —so-called because of their proper potential for 

expanding the capabilities of the UTM machine (Copeland, 2002). These 

include, among others: infinity models—allowing for an infinite number of 

operations (computations) in a finite time (Shagrir, 2004); non-

deterministic models—describing computations initiated and/or randomly 

controlled (Deutsch, 1985); and a na l o g ue—allowing processing of con-

tinuous signals, mathematically described using real numbers from a spe-

cific range (Mycka & Piekarz, 2004). It is worth emphasizing that the 

idea of non-digital coding manifests itself most fully in the case of compu-

tations of the last type, i.e. analogue, because their theory gives the op-

portunity to operate on quantities (codes) from the entire continuum 

(and not on codes described by specific uncomputable numbers).28 

Theoretical proposals of computations of one or another type obvious-

ly do not prejudge the issue of their physical feasibility. This issue is neg-

atively resolved by the C hu r c h -Tu r i ng  hy po t h e s i s , which in one 

version states that “a function is effectively computable if and only if it is 

computable using the universal Turing machine” (Harel, 2000, p. 240).29 

In the context of coding, this wording can be interpreted so that the only 

effectively processable codes are data acceptable to, and possible to gen-

erate by, the UTM machine, i.e. digital (discrete) codes. From this per-

spective, therefore, all codes, regardless of their theoretical description, 

are practically reducible to digital codes—which depends on, among other 

things, the fact that there is always the possibility of approximating them 

using digital equivalents. Considering the fact that the UTM model is 

theoretical and defines more computational constraints than their real 

possibilities, the conclusion of the hypothesis can be described in a differ-

ent way. The UTM model sets absolutely minimal coding limitations in 

computer science.30 In other words: all real computations—regardless of 

 
28 It is also worth adding that analogue techniques remain the closest to the 

practice of computer science—both for historical reasons (because analogue ma-

chines were already being constructed in the 1930s) and from the perspective of 

modern research (Mycka & Piekarz, 2004; Shannon, 1941). 
29  I treat the quoted wording as a hypothesis, because I do not prejudge 

whether only Turing computations (implemented in practice by digital machines) 

are effectively physically feasible. 
30 In the previous section, in the fourth paragraph, I also explained that these 

are the minimum theoretical limitations of digital techniques. 
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the theoretical model that describes them—must be subject to the re-

strictions set out in this very close to model practice (i.e. UTM). The 

limitations of alternative designs, e.g., analogue models, are simply broader. 

The most serious arguments for the truth of the Church-Turing thesis, 

and therefore also for the existence of the above restrictions, refer to the 

concept of infinity. The basic issue is the fact that uncomputable num-

bers—corresponding to solutions to certain problems—are characterized 

by actual infinity. Remember that it concerns their endless, irregular 

expansions, impossible to gradually generate, which as an infinite whole 

represent (digitally) a given number. 

The determination of such representations, and thus the resolution of 

the corresponding problems, must require the use of physical, uncomput-

able quantities existing in nature. Embedding such natural carriers of 

uncomputability in a machine is necessary because it is known that the 

overall representations of uncomputable numbers cannot be coded or 

determined in a traditional way, i.e. using minimally “nature engaging” 

binary codes and operations.31 In particular, all effective implementations 

of the abovementioned analogue techniques require the use of uncomput-

able physical quantities. This is due to the fact that both the specificity 

and strength of these techniques (i.e. their greater computing power than 

digital techniques) rely on the possibility of processing and generating 

quantities from a certain continuum (Mycka & Piekarz, 2004). This, how-

ever, would not be continuous were it not for the uncomputable quanti-

ties filling it.32 

Therefore, the real problem of the existence of carriers of uncomputa-

bility in nature arises. Remember that their most problematic feature is 

their having physical, but in accordance with the theoretical properties of 

 
31 Binary codes and operations must also be physically implemented using one 

or other natural quantities (e.g. electrical pulses); the thing is, however, that in 

their case it is enough to use any physical quantities that are easily distinguisha-

ble (or even one recognizable quantity and the lack thereof). Thus, the degree of 

“engagement” of nature is minimal in their case. 
32 The same fact can be expressed by referring to the properties of real num-

bers, which are the mathematical equivalent of processed continuous analogue 

signals. Well, without uncomputable numbers, each range of real numbers (equiv-

alent to the physical domain of analogue signals) has the cardinality aleph-null, so 

it is equivalent to a discrete set of natural numbers. 
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uncomputable numbers, actual infinity.33 If such carriers existed, the set 

of practical computational codes would go beyond the set of digital codes. 

It would include codes that have direct roots in nature. Some of their 

components, at least, would simply be “calls” to natural phenomena that 

would return some uncomputable quantities directly and in whole. In 

particular, the theory of analogue-continuous computation initiated by 

Claude Shannon (Shannon, 1941) states that a complex analogue code 

may include elementary integration operations, whose continuous results 

(implemented in real time) must be obtained by measuring phenomena 

occurring in special physical systems (e.g. electronic integrators). And as  

I wrote above, for the continuity of the result set it is necessary for it to 

contain uncomputable quantities.  

The existence of uncomputable natural phenomena—that is, those that 

cannot be described in terms of computable numbers and functions im-

plemented by Turing machines—postulates certain physical theories. One 

particularly cited example is from Pour-El and Richards (1989). Accord-

ing to it, the three-dimensional wave described by a certain differential 

equation can obtain that can be expressed only by means of uncomputa-

ble numbers. John Doyle’s proposals which indicate the inability to de-

scribe the processes of achieving equilibrium occurring in nature (e.g. 

thermodynamic) using computable functions fall into the same category 

(Copeland, 2002, p. 470). These and other examples seem to indicate the 

real existence of phenomena that we could treat as natural carriers of 

uncomputability. Let us remember, however, that empirical tests are 

responsible for the compatibility of physical theories with reality, which 

no finite number (again, an infinity problem!) can ever confirm with 100% 

certainty. 

Suppose, however, regardless of the above objection of an epistemolog-

ical nature, that physical carriers of uncomputable codes exist and can be 

used as part of one or other natural computations.34 Despite this assump-

 
33 The philosophical argument for the existence of infinite quantities in nature 

is contained in Amor Infiniti. What philosophical intuitions lead to it? (Mar-

ciszewski, 2012). 
34 I am thinking of computation designed by man, but involving significantly 

substrates and/or natural processes (e.g. quantum calculations or those performed 

using DNA molecules). The class of natural computation in a broader sense also 

includes: 1) computation inspired by observation of nature (e.g. implemented by 

artificial neural networks) and 2) processes occurring in nature, described in com-
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tion, another problem arises concerning the possibility of reading, and 

thus knowing the obtained result. The problem is that in order to know 

the result, infinite accuracy in reading the entire uncomputable quantity 

is necessary.35 It is necessary, because finite accuracy, which, after all, 

characterizes all real measuring instruments, would bring the uncomputa-

ble number desired in a given situation to the level of a finite computable 

quantity. Therefore, we would lose the expected effect of overcoming the 

limitations of digital computing. It can be argued that for some problems, 

it is enough for uncomputable quantities to be simply processed and not 

read—because the solution to the problem is some specific finite value 

that can be read (Stannett, 2003, pp. 121–123). The approach considered 

here is, however, about knowing the general solution to the problem  

(a function that associates all possible input data with the corresponding 

results), and this type of solution is encoded by an entire number that is 

uncomputable with actually infinite expansion. Therefore, the epistemic 

problem remains: without infinite accuracy of reading we cannot know 

such a solution. 

To conclude: the actual infinity of uncomputable numbers means that 

the limitations of computational techniques suggested by the Church-

Turing thesis—techniques that require the physical implementation of 

certain computational codes—can be overcome under at least two condi-

tions: 1) the occurrence of infinite quantities in nature that can be rec-

orded and processed, 2) the existence of a mental disposition for insight 

into actually infinite objects and their relations and methods (e.g. meth-

ods of defining). The second condition must be considered fulfilled—as 

evidenced by the actual infinity theories created by people, including 

theoretical models of computing on actually infinite quantities. The possi-

bility of meeting the first condition seems, at least, problematic. 

 

 

 

 

 

 
putational categories (e.g. intracerebral processes; see Kari & Rozenberg, 2008; 

Rozenberg, Back, & Kok, 2012). 
35 Such accuracy is necessary in the case of analogue techniques, which by def-

inition operate on continuous quantities (two quantities in the continuous domain 

may differ from each other by any small amount). 
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ARGUM ENTATION STRATEGIES IN  ARISTO-

TLE’ S THEORY OF RHETORIC: THE APPAR-

ENT ENTHYM EME AND THE REFUTATIVE 

ENTHYM EM E1 

 

 

S U M M A R Y : In the Organon, Aristotle distinguished two types of reasoning: 

analytical and dialectical. His studies on analytical reasoning in the Prior and 

Posterior Analytics, earned him the title of the father of formal logic. According 

to Chaim Perelman, modern logicians have failed to see the fact that Aristotle’s 

considerations on dialectical reasoning in the Topics, the Rhetoric and the Sophis-

tical Refutations made him also the father of the theory of argumentation. This 

article attempts to answer this diagnosis. Our aim is to prove Perelman’s thesis 

on the homogeneity of Aristotle’s concept of theoretical and practical syllogism. 

The key concept in this proof is that of the enthymeme. In the article, we will try 

to answer the question of what place the enthymeme occupies in Aristotle’s theo-

ry of rhetoric and confront it with the concept of a syllogism. We will also outline 

the structure of argumentation that makes use of the enthymeme, and present 
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two types of enthymemes discussed by Aristotle: the apparent enthymeme and 

the refutative enthymeme. 

 
K E Y W O R D S : argumentation, enthymeme, syllogism, Aristotle’s rhetoric, appar-

ent enthymeme, refutative enthymeme, non-monotonic logics. 

 

1. THE ENTHYM EM E AS A SYLLOGISM  

Perelman points out that just as Peter Ramus drew a line between 

modern rhetoric and the art of argumentation (defining rhetoric as “the 

art of speaking well, the eloquent and decorative use of language”), also 

contemporary formal logic disregards the argumentative role of rhetoric 

and completely neglects dialectical reasoning. Perelman considers these 

two approaches to be erroneous, both substantively (because they ignore 

the function of logic as a tool for studying reasoning in all forms) and 

historically, as Aristotle applied one theory to both analytical and dialec-

tical reasoning (Perelman, 2002, p. 13). 

In fact, Aristotle in his Rhetoric points out two logical ways of reason-

ing that organize the subject of discourse: the enthymeme2(ἐνθύμημα) and 

the example (παράδειγμα). They are counterparts of a syllogism (deduc-

tion) and an induction as the methods by which we learn about the real 

world in philosophy and in science (Rhet., 1356B 1–5), for “every belief 

comes either through deduction or from induction.”3 Due to the common 

modes of persuasion4—as Aristotle writes about enthymemes and exam-

ples—the speech and the speaker himself can be classified as “using either 

 
2  Unless marked otherwise, all citations from the Rhetoric come from The 

Complete Works of Aristotle—Revised Oxford Translation, Vol. 2, ed. by Jona-

than Barnes, Princeton University Press 1984. 
3  In the original: ἅπαντα γὰρ πιστεύομεν ἢ διὰ συλλογισμοῦ ἢ ἐξ ἐπαγωγῆς 

(APr, 68b 13–14). Unless marked otherwise, all citations from the Prior Analytics, 

Posterior Analytics, Topics and Sophistical Refutations come from The Complete 

Works of Aristotle—Revised Oxford Translation, Vol.1, ed. by Jonathan Barnes, 

Princeton University Press 1984. The article uses the commonly accepted Bekker 

numbering. 
4 In the original: αἱ γὰρ πίστεις ἔτεχνόν ἐστι μόνον, τὰ δ᾽ ἄλλα προσθῆκαι... 

(Rhet., 1354a 13–14). 
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enthymemes or examples.”5 The rationale for using one method or the 

other is that: 

induction is more convincing and clear: it is more readily learnt by the use 

of the senses, and is applicable generally to the mass of men, but deduction 

is more forcible and more effective against contradictious people (τοὺς 

ἀντιλογικοὺς ἐνεργέστερον).6 

The way Aristotle writes about the enthymeme in the Rhetoric and 

the amount of space he devotes to it clearly show how important this 

concept was for him. 

What is an enthymeme? Although Aristotle states that enthymemes 

are “the substance of rhetorical persuasion” (Rhet., 1354a 14–15), he fails 

to give a precise definition of an enthymeme.7 This failure, however, is 

only apparent. The definition of an enthymeme is not given explicitly, but 

it can be inferred from Aristotle’s logical works (the Prior and Posterior 

Analytics, the Topics) and from the Rhetoric. It is in the Rhetoric in 

particular that the relation between an enthymeme and a syllogism is 

often emphasized,8 which, combined with Aristotle’s logical texts, makes 

it possible to identify what an enthymeme is. 

In the Prior Analytics and the Topics (Top., 100a, 25ff, 165a 1 ff.), we 

can find a definition of syllogism (deduction), which goes as follows: 

A deduction (συλλογισμός) is discourse in which, certain things being stat-

ed, something other than what is stated follows of necessity from their be-

ing so. I mean by the last phrase that it follows because of them and by 

this, that no further term is required from without in order to make the 

consequence necessary (APr, 24b 18–26). 

This definition is so broad that it includes all forms of inference. On 

the other hand, when contrasted with another passage which says that 

“deduction is the more general; a demonstration is a sort of deduction (ἡ 

 
5  In the original: καὶ ῥήτορες ὁμοίως οἱ μὲν παραδειγματώδεις οἱ δὲ 

ἐνθυμηματικοί. (Rhet., 1356b 27–28). 
6 Top. 105a 16–19; also Rhet., 1356b 20–25 and Top. 157a 18–20.  
7 The lack of this definition in Aristotle’s writings led W. D. Ross—one of the 

most eminent experts on Aristotle—to conclude that “the enthymeme is discussed 

in many passages of the Rhetoric, and it is impossible to extract from them  

a completely consistent theory of its nature” (Ross, 1949, p. 409). 
8 Rhet., 1356a 22, b5; 57a 23; 94a 26; 95b 22; 00b 27 ff.; 02a 29 ff.  
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μὲν γὰρ ἀπόδειξις συλλογισμός τις), but not every deduction is a demon-

stration” (APr, 25b 29–31), it can be seen that the term “syllo-

gism/deduction” is broader and contains more than strictly scientific (ap-

odeictic) demonstration. It is a kind of deductive reasoning as long as it 

preserves the structure implied by its definition. Thus, syllogisms can 

occur not only in formally scientific argumentation, but also in dialectical 

or rhetorical argumentation (Grimaldi, 1972, p. 85). 9  In the Rhetoric, 

Aristotle states that “the enthymeme is a sort of deduction”,10 and claims 

that “he who is best able to see how and from what elements a deduction is 

produced will also be best skilled in the enthymeme” (Rhet., 1355a 8–14). 

On the basis of the theory of knowledge presented in the Posterior 

Analytics, it can be seen that the difference between a deduction in sci-

ence and the enthymeme lies in the nature of premises assumed in  

a demonstrative and in a rhetorical deduction. In a scientific deduction, 

premises must be true, primitive, immediate, more familiar, prior to, and 

explanatory of, the conclusion,11 whereas in the enthymeme they can be 

either probable or necessary (τεκμήρια). The probability of premises and 

conclusions indicates the affinity of rhetoric with dialectic, the syllogism 

of which is based on premises that are generally accepted (ἐξ ἐνδόξων; 

Top., 100a 27–100b 18). The premises used in enthymematic reasoning, 

most of which are probable, do not exhaust the possibility of using the 

enthymeme. This means that a discourse in rhetoric can go beyond what 

is probable knowledge. From this it follows that a rhetorical syllogism, 

because of the nature of its premises (probable or necessary), may occur 

as a dialectical syllogism or, sometimes, as a strictly scientific (apodeictic) 

 
9 According to I. Hacking, who is worth quoting here, “It is widely agreed that 

Topics and Rhetoric represent some of Aristotle’s first courses of lectures [...] 

Topics is about dialectic, back and forth argument between peers. Rhetoric is the 

argument of an orator addressing an audience. [...] This has a corollary which  

I shall call ‘Before logic’: Aristotle had not yet discovered the syllogism at the 

time he lectured on rhetoric and dialectic ... The syllogism introduced a new ritual 

into argument, one [a ritual] that was not simply there to discover [in the times of 

Rhetoric and Topics]. What was [radically new] was what we now call a valid 

form of argument. If the premises are true, then the conclusion must be true too. 

Aristotle, in creating the theory of the syllogism, discovered what we call logical 

consequence and valid argument” (Hacking, 2013, p. 426). 
10 In the original: ἐνθύμημα μὲν ῥητοπικὸν συλλογισμόν (Rhet., 1356b 4–5). 
11 In the original: ἀληθῇ, πρῶτα καὶ ἄμεσα, γνωριμώτερα καὶ πρότερα καὶ αἴτια 

τοῦ συμπεράσματος (APo, 71b 19). 
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syllogism. Hence, the enthymeme seems to be a form of inference which 

may partake of both the nature of the dialectical and the scientific syllo-

gism (Grimaldi, 1972, p. 86). 

The question arises, however, about the formal construction of an en-

thymeme.12 Aristotle’s comments do not indicate that he considered the 

enthymeme to be an ordinary syllogism of three statements. Hence,  

a rhetorical syllogism has been commonly treated as a syllogism truncated 

in form, a syllogism with a suppressed premise or an omitted conclusion 

(Bitzer, 1959, p. 143).13 Nevertheless, Aristotle’s statements in the Rheto-

ric do not permit one—as it seems—to make this condition necessary 

when defining an enthymeme. Aristotle repeatedly pointed out that it was 

possible to omit a conclusion or leave out the major premise, but he did 

not treat this as the sine qua non condition for the enthymeme. The fol-

lowing passage from the Rhetoric can serve as an example: 

The enthymeme must consist of few propositions, fewer often than those 

which make up a primary deduction; For if any one of these propositions is 

a familiar fact, there is no need even to mention it, the hearer adds it him-

self. (Rhet., 1357a 16–17) 

These comments set a pragmatic condition for effective argumentation; 

namely we should not introduce premises that are unnecessary (from the 

point of view of the recipients), for instance, the premises that are obvi-

ous, as in the example with the winner at the Olympic games.14 Aristo-

tle’s view on the form of an enthymeme is well summarised in his state-

ment that enthymemes should be “as compact as possible” (Rhet., 1419a 

18–19); the enthymeme should be a brief, direct and condensed inference 

in the shortest possible form.15 

 
12 Bitzer’s paper (1959) provides an overview of the main approaches to this 

problem. 
13 The enthymeme is treated in this way by Cope, Baldwin, and De Quincey, to 

name a few; and also in most textbooks on logic (cf. e.g. Lechniak, 2012, p. 212). 
14 “For instance, to prove that Dorieus was the victor in a contest at which 

the prize was a crown, it is enough to say that he won a victory at the Olympic 

games; there is no need to add that the prize at the Olympic games is a crown, 

for everybody knows it” (Rhet., 1357a 18–21). 
15 Aristotle’s exposition on maxims as a means of persuasion points to this as 

well. “Now an enthymeme is a deduction [...], it is therefore roughly true that the 

premisses or conclusions of enthymemes, considered apart from the rest of argu-

ment, are maxims” (Rhet., 1394a 26–28). A maxim is transformed into a full en-
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This requirement, that enthymemes should be as much condensed as 

possible is determined by the factor which always plays a key role in  

a rhetorical speech, namely the presence of the audience. Aristotle, as 

Grimaldi notes (1972, p. 88), is concerned here that the auditors acquire 

the knowledge and understanding of the subject of a speech, an under-

standing that he calls μάθησις ταχεῖα (a quick, comprehensive grasp of the 

problem).16 “A quick grasp of the problem”—as he writes in Book III of 

the Rhetoric—is achieved in three ways: 1) by enthymeme with respect to 

thought, 2) by antithesis with respect to style (antithetic style), and 3) in 

language by metaphor (Rhet., 1410b 27–36). Thus, Aristotle focuses on 

three components of speech: thought, language, and style. The enthy-

meme does it by the way in which it organizes the thought; the clarity of 

style does it by the way in which the idea is emphasized by the sentence 

structure; in language, in turn, it is the structure of analogy in the meta-

phor, which results in “a quick grasp” (μάθησις ταχεῖα). The relation be-

tween enthymeme and antithetic style is emphasized by Aristotle’s state-

ment that “so too in enthymemes a compact and antithetical utterance 

passes for an enthymeme, such language being the proper province of 

enthymeme (χώρα ἐστιν ἐνθυμήματος)” (Rhet., 1401a 4–6). The antithesis 

is based on the relation between two concepts or premises, thanks to 

which we can move directly from a concept that is known to a new one, 

or from a premise already known to a lesser known one. As Hacking 

points out, there is a fundamental practical difference between dialectic 

and rhetoric. 

Rhetoric is concerned with discourse addressed to an audience and au-

diences have short attention spans. That is why, long arguments should 

be avoided. Because of this need for brevity, agreed common knowledge is 

always the best starting point. When the orator is familiar with the audi-

ence, most of the premises can be assumed, not stated. Dialectic, by con-

trast, is argument between two parties. It is back and forth. Steps can be 

recalled, repeated, defended, and criticized, collectively or one by one. 

Dialectic is dialogue. Rhetoric is monologue (Hacking, 2013, p. 429). 

The stylistic construction of an utterance (antithetic style) and the 

form of an enthymeme (where one premise is omitted), focus above all on 

the simplicity and directness which are necessary for the audience to un-

 
thymeme when the reason or justification for a given statement that forms  

a premise or a conclusion, is added. 
16 Rhet., 1410b, 10–12, 20–21, 25–26; 1400b, 31–34; 1357, 21. 
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derstand the utterance. Introducing a complete deduction into the theory 

of rhetoric, could prevent the audience from understanding the message 

or, at the very least, would make this understanding difficult. Thus,  

a proposition is omitted in the enthymeme because of some praxis and 

because it is obvious. It exists, yet it is not explicitly stated. In this sense, 

formally speaking, the enthymeme is a normal syllogism, but it differs 

from a dialectical and demonstrative syllogism in assumed premises, or in 

the way the statements implied in the conclusion are qualified. 

2. ARGUMENTATION BY ENTHYMEME 

For Aristotle, the fundamental difference between different kinds of 

syllogisms lies in the type of knowledge that is obtained in the conclusion. 

“Now the materials of enthymemes are probabilities and signs, so that 

each of the former must be the same as one of these” (Rhet., 1357a 32–33). 

This remark is complemented by the statement that “enthymemes are 

based upon one or other of four things: a) probabilities (εἰκός), b) exam-

ples (παράδειγμα), c) evidences (τεκμήριον), d) signs (σημεῖον)” (Rhet., 

1402b 12–14). These “four things”, however, can be reduced to just two. 

An example may be a source of enthymeme insofar as it can give you, on 

the basis of similar cases, a probable universal principle or truth from 

which you may then argue by the use of enthymeme to a particular infer-

ence (Rhet., 1402b 15–17). An example gives the universal by that flash 

of insight by which we pass from knowledge of a particular fact to direct 

knowledge of the corresponding principle (Grimaldi, 1972, p. 104). In this 

context, it should be viewed as the basis for educing a universal proposi-

tion or principle. Evidence, on the other hand, is in fact a kind of sign 

because “of signs, one kind bears the same relation as the particular bears 

to the universal, the other the same as the universal bears to the particu-

lar. A necessary sign is an evidence (τεκμήριον), a non-necessary sign has 

no specific name (ἀνώνιμον).”17 So, we are left with an enthymeme that is 

based on probabilities (ἐξ εἰκότων) and an enthymeme that draws its 

premises from signs (ἐκ σημείων). 

 
17 Rhet., 1357b, 1–7. Podbielski renders the term tekmerion (τεκμήριον) as “ev-

idence” in the sense of a necessary sign; for example, the presence of milk is  

a necessary sign that a woman is pregnant or has recently borne a child, which 

should be distinguished from a probable sign (for instance, the paleness of a wom-

an may indicate pregnancy, but not necessarily, because it may also be a symp-

tom of something completely different). 
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The differences between these two types of enthymeme are pointed out 

in the Prior Analytics: “eikos and semeion are not identical, a probability 

is a reputable proposition (ἔνδοξος) […], a sign is meant to be a demon-

strative proposition, either necessary or reputable (πρότασις ἀποδικτικὴ 

ἀναγκαία ἢ ἔνδοξος)”(APr, 70a 3–8). The difference between these two 

sources is ultimately based on the kind of knowledge obtained when we 

use either semeion or eikos. An enthymeme built upon a probability 

(εἴκοτα)—as Grimaldi notes (Grimaldi, 1972, p. 105 ff)—will give what is 

called the ratio essendi of the fact stated in the conclusion, that is the 

explanation why this conclusion actually is. In other words, premises 

contain the reasons for the fact stated in the conclusion. On the other 

hand, an enthymeme built upon signs (σημεῖα) indicates the ratio cogno-

scendi of the fact stated in the conclusion; i.e., it indicates a symptom 

from which this fact can be inferred, as it is in the proof from signs in the 

first figure. 

In order to get a good understanding of this distinction between ratio 

essendi and ratio cognoscendi, it is necessary to review Aristotle’s theory 

of syllogism in more detail. Aristotle differentiated three syllogistic fig-

ures,18 namely: 

Figure I Figure II Figure III 

B is A B is A C is A 

C is B C is A C is B 

C is A C is B B is A 

The methodological function of each premise is determined by the 

function of terms in a syllogism.19 When analysing the role of terms in  

a syllogism, we can distinguish their logical function and the function 

“from the thing”. The first one refers to the place that a term takes in  

a given syllogism (especially when it comes to the middle term, which 

 
18 Figure IV, which combines the remaining generally valid syllogistic modes, 

was given by Galen. Obviously, the above diagram shows only how the terms are 

located in relation to one another—premises and a conclusion can be both univer-

sal and particular, affirmative and negative. 
19 Obviously, from the purely formal side, there is no difference between major 

and minor premises (as premises exist in conjunction, and this is alternating); the 

findings on the role of premises in a syllogism are based on Achmanow’s explica-

tion (Achmanow, 1965, pp. 224–237). 
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appears in both premises), while the other is that of the ontological cause 

(reason) of what we state in the conclusion on the subject.20 These func-

tions are convergent only in syllogisms of the first figure and can be illus-

trated by the following table: 

 Functions “from the thing” in Figure I 

Middle 

term 

objective reason why something belongs (or 

does not belong) to the subject 

that 

which is 

near 

B 

Major 

term 

property attributed (or denied) to the sub-

ject on the basis of the reason from which it 

follows 

does not 

twinkle 

A 

Minor 

term 

the thing to which we attribute (or deny) 

something on the basis of knowledge about 

why something belongs (does not belong) to 

it 

planets C 

The third column of the table refers to a well-known example given by 

Aristotle in Chapter 13 of Book I of the Posterior Analytics: 

What is near (B) does not twinkle (A) 

Planets (C) are near (B) 

Planets (C) do not twinkle (A) 

The middle term corresponds to the cause of the property that is attribut-

ed to the subject in the conclusion, the conclusion follows from the premis-

es not only from necessity, but also because it contains knowledge of  

a causal relationship, which as such is necessary, so it must be necessarily 

true […] In this case, the major premise shows the cause and its conse-

quences, and the minor premise indicates the presence of this cause in the 

subject of reasoning. (Achmanow, 1965, p. 228) 

Consequently, this syllogism is an example of a syllogism based on the 

ratio essendi. However, as Aristotle notes, it is not always the case. He 

 
20 “All these [causes] are proved through the middle term. The case in which if 

something holds it is necessary that this does, does not occur if one proposition is 

assumed, but only if at least two are; and this occurs when they have one middle 

term. So when this one thing is assumed it is necessary for the conclusion to hold” 

(APo, 11, 94a 23–27). 
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gives the following example of a syllogism that is not based on knowing 

the cause (APo, 78a): 

What does not twinkle (B) is near (A) 

Planets (C) do not twinkle (B) 

Planets (C) are near (A) 

This syllogism is not from the knowledge of the reason why, but from 

the knowledge of what something is—planets are not near because they 

do not twinkle, but they do not twinkle because they are near. 

Although the conclusion necessarily follows from the premisses, it can not 

be considered to be necessarily true, because the fact that some subject is 

attributed with the consequence of some property does not make it neces-

sary for the subject to possess that property itself. (Achmanow, 1965, p. 

228) 

What we have here is an example of a syllogism in modus cognoscendi. In 

a syllogism based on knowing the cause, logical motivation corresponds to 

the real cause of some property—that is why we have both the necessity 

of following and the necessity of a real presence of some property in the 

subject; this is not the case in a syllogism that is not based on the 

knowledge of the cause—“logical motivation does not correspond to the 

real cause of this property” (Achmanow, 1965, p. 228). 

The definition of probability in the Rhetoric helps get a better under-

standing of eikos argumentation:  

a probability is a thing that happens for the most part—not, however, as 

some definitions would suggest, anything whatever that so happens, but 

only if it belongs to the class of what can turn out otherwise, and bears the 

same relation to that in respect of which it is probable as the universal 

bears to the particular. (Rhet., 1357a 34b 1) 

Probability is based on the typicality and regularity of some properties 

attributed to a given class of things, and the fact that some property is 

attributed is a condition for inference. A premise must be known and 

generally accepted.21 Accepting the premises based on eikos leads to fur-

 
21 As D. Walton (2001) points out, when talking about eikos, it would be bet-

ter to use the word plausibility instead of probability. 
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ther knowledge that meets the condition of logicality on the one hand (as 

the conclusion implied by these premises is based on the rules of infer-

ence), and, on the other hand, these premises are acceptable to the mind 

because what they state corresponds to the observed facts, which is  

a condition for the mind to think that such is the actual fact. Eikos ex-

presses an aspect of the real order that is understandable and stable. An 

inference from eikos does not conclude to an unconditioned and necessary 

truth; but it does present an eminently reasonable guaranty that the 

conclusion represents the objective fact (Grimaldi, 1972, p. 109 ff). 

On the other hand, when writing about a sign in the Prior Analytics 

(APr, 70a, 7–9), Aristotle points to a relationship between two realities in 

the order of existence, which leads from the knowledge of one to the 

knowledge of the other. A sign is a relation between “two things” which 

have their foundation in the nature of these realities and their existence is 

objective and determined only by the fact that the existence of one de-

pends on the existence of the other. The relationship between the sign 

and the signate leads the mind from the known to the unknown because 

of this one-to-one correspondence. It is a real relationship which has its 

ground in the esse of the sign and as such it is the relationship of formal 

causality (Grimaldi, 1972, p. 110). Because of the sign, we can know the 

signate. That is why, Aristotle believes that semeion has a stronger 

demonstrative force than eikos. This can be easily seen in Chapter 27 of 

the Prior Analytics, where he discusses the use of a sign in syllogistic 

figures. In general, the demonstrative force of a sign is expressed by the 

statement that “a sign wants to be a demonstrative proposition either 

necessary or reputable.”22 What follows is that there are different kinds of 

signs: necessary and commonly accepted (ἢ ἀναγκαῖα ἢ ἔνδοξος), which 

seems to correspond with the distinction made in the Rhetoric between 

necessary signs (τεκμήριον) and non-necessary signs (σημεῖον ἀνώνιμον). 

Tekmerion contains within itself an element of necessity in relation to the 

signate (πρότασις ἀποδεικτικὴ ἀναγκαῖα), while semeion anonymon indi-

cates the signate only with probability (πρότασις ἀποδεικτικὴ ἔνδοξος). 

This distinction can be seen in the position of terms in a syllogism. Tek-

merion is the middle term of an enthymeme or of a syllogism of the first 

figure and assumes the relation of necessity in respect to the signate. 

This is the case in enthymemes of the first figure. We have: 

 
22 In the original: σημεῖον δὲ βούλεται εῖναι πρότασις ἀποδεικτική (APr, 70a 6–7). 
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[Every woman who has milk (B) is with child (A)] 

This woman (C) has milk (B) 

This woman (C) is with child (A) 

If we state only the second premise—we have a sign; but if the first 

(implicit) premise is stated as well—we get a syllogism (deduction). As 

can be seen, such a rhetorical syllogism is a syllogism “from the thing”, as 

the logical function of the middle term coincides with its “causal” function. 

Semeion anonymon is the extreme term of inference and does not sig-

nify necessity. In turn, semeion anonymon as the middle term is identi-

fied in the second and third figure. “[Deduction] which proceeds through 

the last figure is refutable even if the conclusion is true, since the deduc-

tion is not universal nor relevant to the matter in question.” On the other 

hand,  

the deduction which proceeds through the middle figure (II) is always refu-

table in any case; for a deduction can never be formed when the terms are 

related in this way; for though a woman with child is pale, and this wom-

an is pale, it is not necessary that she should be with child. (APr, 70a 30–

37) 

For Aristotle’s second figure, the example can be represented as fol-

lows (symbols A, B, C refer to symbols from “the thing”): 

A woman with child (B) is pale (A) 

This woman (C) is pale (A) 

This woman (C) is with child (B) 

The argumentation aims to prove that a woman is pregnant, and the 

reason is paleness as something that accompanies pregnancy and can be 

stated about the woman; if there is only the second premise, we have  

a sign; if both premises occur together, we get a syllogism. “In the enthy-

meme reduced to the second figure, the sign (paleness) is the middle term 

when we consider its logical function, but due to its nature (as a conse-

quence) it should be called the major term and denoted by letter A” 

(Achmanow, 1965, p. 319). The situation is similar with enthymemes of 

the third figure. 
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Figure II 

Aim: to conclude that there is no objective reason in 

the subject on the basis of the lack of conse-

quence in the subject. 

Formal effect: both premises cannot be affirmative 

Major premise: universal: expresses the relationship of cause 

and effect. 

Negative consequence 

in the major premise: 

minor premise: attributes the opposite to the 

subject—it is affirmative. 

Affirmative conse-

quence in the major 

premise:  

minor premise contradicts the occurrence of the 

consequence in the subject. 

Conclusion for the 

enthymeme: 

sign in the second figure—consequence; is not  

a demonstrative sign. 

 

3. THE APPARENT ENTHYM EME 

As we have shown above, enthymemes from signs and from probabili-

ties can quite easily be reduced to a demonstrative syllogism and as such 

can be examined by means of “ordinary” methods that are used to deter-

mine whether a deduction is valid (they differ from a demonstrative syl-

logism only in the kind of premises). Things are different when it comes 

to the apparent syllogism.23 Aristotle’s exposition on the apparent enthy-

meme and the refutative enthymeme serves to:  

(a) reveal possible errors and evasions in logical reasoning;  

(b) show how to contend with them. This is the defence of the logos 

against misleading and incorrect argument. 

 
23 Grimaldi notes that “there is rarely any discussion of what Aristotle calls 

the apparent enthymeme and the refutative enthymeme. The reticence is surpris-

ing since they represent another aspect of the enthymeme and an understanding 

of them would seem necessary to a full comprehension of enthymeme and enthy-

mematic reasoning. In the present context they are particularly relevant and 

instructive for they confirm the three points just mentioned in the discussion of 

the enthymeme as the instrument of deductive reasoning: 1) the fact that rhetoric 

is concerned with truth, 2) the structural form of the enthymeme, and, 3) the 

character of its subject-matter” (Grimaldi, 1972, p. 94). 



142 MAREK LECHNIAK, ANDRZEJ STEFAŃCZYK  

 

In the Sophistical Refutations24 and the Rhetoric (B24), Aristotle clas-

sifies nine topoi as examples for the apparent enthymeme, which is con-

sidered to be specious reasoning, i.e. reasoning that is logically invalid. 

These specious inferences, can be divided into three groups: 

(i) formally fallacious—treated as a syllogism in one of the three syl-

logistic figures, they contain a formal error; 

(ii) materially fallacious—the content of statements (premises) of 

such an enthymeme is false—unnecessary, unlikely, or impossible. 

(iii) inference that combines some lack in the syllogistic form and in 

reasoning from seemingly plausible premises, and thus imitates in-

ference, which in fact does not take place, for example: “[…] some 

he saved, others he avenged, the Greeks he freed” (Rhet., 1401a 

10–11); each of these statements has been proved on the basis of 

other premises or arguments. 

Ad (I) Enthymemes of the first group in the catalogue from the Rhet-

oric [B24] include topoi Ib, II, VIII, IX. These inferences are formally 

incorrect, namely: 

• Ib follows from the use of homonymy to give the appearance of in-

ference; 

• II takes the whole and its parts as identical, though often they are 

not;25 

• VIII—fallacy lies in omitting the middle term; 

 
24 The Sophistical Refutations (165b 23 ff) give two kinds of “false” inference: 

(i) παρὰ τὴν λέξειν (fallacia dictionis)—inference based on the use of linguistic 

forms that “seem to refute a statement”; apparent deductions make use of the 

following linguistic forms: 1) homonymy (ὁμωνυμία), 2) amphiboly—ambiguous 

words (ἀμφιβολία), 3) combination of expressions (συνθέσις), 4) division of expres-

sions (διαίρεσις), 5) prosody, or changing the length of vowels (προσῳδία), 6) in-

correct grammatical forms (σχῆμα λέξεως). (ii) ἔξω τῆς λέξεως (fallacia extra 

dicionem)—inference based on the erroneous use of non-linguistic forms. 
25 Fallacy of the statement: “The one who knows the letters knows the whole 

word, since the word is the same thing as the letters which compose it”, can be 

demonstrated by the following reconstruction: Who knows [all] parts of the whole, 

knows the whole. Each word is a whole made up of letters. Hence, anyone who 

knows all the letters [that make up a word] knows this word (Rhet., 1401a 28–29). 
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• IX (fallacia secundum quid est similiter)—is based on using an 

expression in an absolute sense (i.e. without qualification) and in 

a particular sense interchangeably;26 

Ad (ii) Materially fallacious inference, where fallacy of one of the 

premises can be caused by topoi V–VII, which are formally fallacious:27 

• V (fallacia accidentis; Soph. Ref., 166b 28–32)—fallacy that occurs 

because it is assumed that the same applies to a thing as to one of 

its attributes; 

• VI (fallacia consequentis; Soph. Ref., 167b 1–9)—fallacy stems 

from the belief that the relation of consequence is convertible; i.e., 

if we assume that every A is B, then every B is also A (or in other 

words, by assuming that if there is A, then there is B, it is assumed 

that if there is B, there is also A); 

• VII (fallacia propter non causam ut causa; Soph. Ref., 167b 21 

ff)—accepts the principle that because an event happened earlier, it 

is a cause of a later event (post hoc ergo propter hoc). 

Ad (iii) Inference that is fallacious both because of the form of a syllo-

gism and of its content: by using seemingly probable premises (IV) or by 

suggesting that they follow from some reasoning that, in fact, is missing 

(Ia, III). 

An important property of the apparent enthymeme is that it inade-

quately represents reality as it is and as it can be known (Grimaldi, 1972, 

p. 95), because “what makes a sophist is not his abilities but his choices” 

 
26 Reconstruction of an example: What is not is an object of opinion. Whatev-

er is an object of opinion is [as an object of opinion]. Therefore, what is not, is [as 

an object of opinion]. Normally, taking into account the information in square 

brackets, we have the Barbara syllogism; but deleting the information in the 

brackets changes the relative meaning into the absolute one. Then we have  

a distinction: “is (in reality)”—“is (as an object of opinion)” (Soph. Ref., 166b 37–

167a 19). 
27 Strictly speaking, topoi V–VII, just as the topoi of group I, are also exam-

ples of formally fallacious inferences. What makes them different from the topoi of 

group I is that they are used as an apparent proof for premises (and not as  

a proof for the conclusion, as is the case in group I). They result in false premises. 

More properly, we would say that the premises in the topoi of group II are falla-

ciously justified (petitio principii). 
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(Rhet., 1355b 17–18). In all cases, the apparent enthymeme does not val-

idly demonstrate the probable knowledge; i.e., the knowledge concerning 

the contingent reality, but it usually gives the appearance of demonstrat-

ing—φαίνεσθαι δεικνύναι (Rhet., 1356a 36). Aristotle also uses the term 

“eristic syllogism”, or “eristic (contentious) deduction” for the apparent 

enthymeme (Top. 100B 13–101a 4),28 and by that he understands those 

arguments “that deduce or appear to deduce to a conclusion from premis-

es that appear to be reputable but are not so” (Soph. Ref., 165b 7–8). 

4. THE REFUTATIVE ENTHYM EME 

According to Aristotle, an argument may be refuted in two ways:  

1) by a counter-deduction (ἀντισυλλογισάμενον), or 2) by bringing an 

objection (ἔνστασιν) (Rhet., 1402a 31). 

Ad (1) The difference between the demonstrative (deictic) enthymeme 

and the refutative enthymeme (elenctic) is determined by placing logical 

argumentation in rhetoric into the context of dialectical argumentation: 

[…] there are two kinds of enthymemes. One kind proves some affirmative 

or negative proposition; the other kind disproves one. The difference be-

tween the two kinds is the same as that between refutation and deduction 

in dialectic. The probative enthymeme makes an inference from what is 

accepted, the refutative makes an inference to what is unaccepted. (Rhet., 

1396b 23–28) 

Thus, the relation between deictic and elenctic enthymeme in rhetoric 

is analogous to the relation between a dialectical syllogism and elenchos 

in dialectics (Soph. Ref., 164b 27–165a 3). “As elenchos and the dialectical 

syllogism are both syllogisms, one destructive, the other constructive, so 

are the elenctic and deictic enthymemes both enthymemes. Any difference 

between them resides solely in the fact that the elenctic enthymeme (just 

as elenchos itself) is inference directed to disprove the conclusion reached 

 
28 According to Aristotle, there are three types of reasoning depending on the 

purpose and nature /content of premises: (1) scientific reasoning/reasoning used 

in science—aimed at reaching the truth; and proceeding from true / necessary 

premises; (2) reasoning in rhetoric—aimed at defeating an opponent; here premis-

es are probable, i.e. believed by most people—ἐξ ἐνδόξων; (3) eristic / sophistical 

reasoning—the content of a dispute is not important; this kind of dispute called 

γωνικῶς or ἐριστικῶς was practised by Sophists, and it is the subject of Aristotle’s 

Sophistical Refutations. 
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by the deictic enthymeme that it is refuting (Grimaldi, 1972, p. 100).”29 

Deictic and elenctic enthymemes use the same topoi and these topoi, 

categories of reasoning, are usually based on probabilities (ἐκ τῶν 

ἐνδόξων), which results in the fact that many of them are contradictory 

to one another (Rhet., 1402a 33–35). Since opposing probabilities are 

possible, there is a reason for using the refutative enthymeme in order to 

infer a conclusion that negates the conclusion of a demonstrative enthy-

meme while keeping the same categories of argument. 

Ad (2) “An objection (ἔνστασις) is a proposition contrary to a proposi-

tion” (APr, 69a 37); enstasis consists in standing in the way of an oppo-

nent’s reasoning by denying one of his premises, before he formulates  

a syllogism which should be answered with a counter-syllogism. Enstasis 

questions universal premises and it must be made in the same figure in 

which the initial syllogism was formulated (Aristotle, Polish ed. 1990, p. 

247, note 95). 

In the Rhetoric, Aristotle gives four ways of raising objections to an 

opponent’s premises: “Objections, as appears in the Topics, may be raised 

in four ways—either by directly attacking your opponent’s own statement, 

or by putting forward another statement like it, or by putting forward  

a statement contrary to it, or by quoting previous decisions.” 30  In his 

commentary to the Prior Analytics, Kazimierz Leśniak gives a brief and 

clear explanation of these four ways. An objection (ἔνστασις) can be 

raised: 

1) on the basis of the thing itself (ἐξ ἑαυτοῦ)—if someone claims that 

love is good, we object either a) by stating that every need is bad, which 

is a universal statement, or b) by stating that unhappy love is bad, which 

is a particular statement.31 

2) on the basis of a similarity (ἐκ τοῦ ὁμοίου)—if a statement that we 

question says that those who have been badly treated hate those who 

 
29 Cf. Rhet., 1403a 15–31, also 1418b 2–6. 
30 αἰ δ᾽ ἐνστάσεις φέρονται καθάπερ καὶ ἐν τοῖς τοπικοῖς τετραχῶς ἢ γὰρ ἐξ 

ἑαυτοῦ ἢ ἐκ τοῦ ὁμοίου ἢ ἐκ τοῦ ἐναντίου ἢ ἐκ τῶν κεκιμμένων (Rhet., 1402a 34 ff). 
31 Aristotle’s initial argument can be presented in the form of reasoning: Every 

need to do good is good (P; enthymematic premise). Love is the need to do good 

(Q). Therefore, every love is good (R). Using the first method, we refute the ma-

jor premise with the argument: Every lack is evil. Every need is a lack. Therefore, 

every need is evil. Therefore, the need to do good, is evil. 
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treated them badly, we reply that those who have been well treated do 

not always treat well those who treated them well.32 

3) on the basis of a contradiction (ἐκ τοῦ ἐναντίου)—if someone claims 

that a good person does good to all his friends, we reply that a bad per-

son does not do evil to all his friends. 

4) on the basis of previous decisions (ἐκ τῶν κεκιμμένων)—if the 

statement that we question says that we should always be forgiving to 

drunken people, we reply that Pittakos is by no means worthy of praise, 

because if he were he would not deserve stricter punishment than the one 

who being drunk did bad things (Aristotle, Polish ed. 1990, p. 248, note 

99). 

From what has been written above, it can be concluded that enstasis 

is a probable proposition that suggests that an opponent has made a false 

statement, or strictly speaking, that undermines his belief in the truth of 

the claim he has made by challenging one of his premises or showing that 

his reasoning to justify the premise is invalid. This explanation corre-

sponds to the definition of enstasis given in the Prior Analytics, namely 

that “enstasis is a proposition contrary to a proposition” (APr, 69a 37). 

The use of enstasis in challenging an argument can be considered from 

the perspective of contemporary non-classical logics. The classical propo-

sitional calculus (and classical consequence) fails to provide an adequate 

view of argumentation by enstasis. The core of this argumentation is to 

“block” an opponent’s argument by challenging his premise. Meanwhile, 

classical logic is monotonic; i.e.: If X ⊢ φ, then (X ∪ ψ) ⊢ φ (if premises 

are contradictory, then a set of propositions derived from them is contra-

dictory and hence trivial). Thus, adding the enstasis to premise, will lead 

the system of conclusions into collapse (contradiction). From the point of 

view of the theory of argumentation, such an approach to blocking  

 
32 Here again, the challenged argument can be presented in the form of the 

Barbara syllogism: Everyone who has suffered distress, hates. Everyone who has 

suffered evil, has suffered distress. Therefore, everyone who has suffered evil, hates. 

The first premise of this argument can be challenged by means of an antithesis: 

“Those who have experienced good, do not always love.” This antithesis can be 

supported by an argument: [Each] experience of good is similar to the experience 

of evil. Some who experience good do not love. Therefore, some who suffer evil do 

not hate. 
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a premise is obviously undesirable. It seems that non-monotonic logics, 

for example, can be a useful tool here.33 

We are said to be reasoning non-monotonically when we allow that a con-

clusion that is well drawn from given information may need to be with-

drawn when we come into possession of further information, even when 

none of the old premises is abandoned. In brief, a consequence relation is 

non-monotonic iff it can happen that a proposition x is a consequence of  

a set A of propositions, but not a consequence of some superset A ∪ B of 

A. (Makinson, 2008, p. 2) 

To come back, for example,34 to the enstasis on the basis of the thing 

itself (ἐξ ἑαυτοῦ) (“if someone claims that love is good, we object either  

a) by stating that every need is bad, which is a universal statement, or  

b) by stating that unhappy love is bad, which is a particular statement”): 

the thesis that love is good is based on implied assumptions—enstasis 

 
33 Formal theories of belief revision can serve as another tool here. They de-

scribe formal conditions for rational revision of beliefs; that is, adding (expanding), 

removing (contracting) and “exchanging” a given belief into a belief that contra-

dicts it (revision). The operation of contracting would be the closest to enstasis: 

an argument that we give forces the opponent to give up his belief about the 

truth of a premise initially accepted. For more details on the formal theory of 

belief revision, see (Lechniak, 2011). On the other hand, in the so-called formal 

epistemology, there is the concept of defeasible reasoning developed by J. Pollock. 

What is essential in this theory is the distinction made between defeasible 

schemes and indefeasible schemes. Reasoning in line with defeasible schemes pro-

vides reasons for a conclusion and mandates a conclusion if there is no infor-

mation that would contradict this conclusion. A set of defeaters that may chal-

lenge the justification of the conclusion is associated with the schemes of defeasi-

ble reasoning. Reasoning is indefeasible if a set of defeaters is not associated with 

it (e.g. reasoning based on the laws of logic). Two kinds of defeaters can be dis-

tinguished: the rebutting defeater, which is an argument for the opposite conclu-

sion (any reason for denying the conclusion), and the undercutting defeater, which 

attacks the inference between the premises and the conclusion of defeasible rea-

soning; cf. (Pollock, 2008) and /or (Pollock & Gillies, 2000). As a reviewer of this 

article rightly suggests, rebutting defeaters can be related to the issue of contra-

dictory syllogisms, and undercutting defeaters—to using topoi based on fallible, in 

some cases, forms of inference. 
34 The above attempt is only preliminary and there is no doubt that it re-

quires refining; our aim is just to show that enstasis can be described in the lan-

guage of non-monotonic logics. 
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attacks the implied premise that every need to do good is good. Using the 

sign ⊨ for the enthymematic inference,35 we can write the initial reason-

ing that is attacked as P ⋀ Q ⊨ R, while the counter-argument (“Every 

need is evil” (S)) added to a set of premises negates the conclusion; i.e., 

(P ⋀ Q ⋀ S) ⊨ ¬R, and consequently (P ⋀ Q ⋀ S) ⊭ R. 

 

5. SUM MARY 

In summary, the following conclusions can be drawn: 

(i) the enthymeme that proceeds from what is probable (εἴκος) and 

from what is necessary (σημεῖον ἀνώνιμον) implies conclusions correspond-

ing to its suppositions; that is why, conclusions can be only probable in  

a (rhetorical) syllogism, or they can be strictly scientific statements 

(τεκμήριον), as is the case with conclusions in an apodeictic syllogism. 

(ii) demonstrative and refutative enthymemes do not differ (taking into 

account the omitted major premise) in their structure from apodeictic 

syllogisms; the difference lies in their premises. Since the aim of an en-

thymeme is rhetorical (to convince the listener), the argument must be 

concise and that is why the major premise is omitted (as the implied one). 

(iii) the conciseness of an enthymeme makes it possible to use appar-

ent enthymemes, i.e. reasoning that is logically invalid; when such an 

apparent enthymeme is “expanded” into a full syllogism, this invalidity 

becomes obvious. 

(iv) contemporary non-monotonic logics (e.g. default logic, defeasible 

logic or the theory of belief revision) can be useful in the analysis of en-

thymematic argumentation.36 

 

 

 

 

 

 
35 J. Malinowski (1997) points out that, just as in the classical formalization of 

reasoning, we would use the following statements: “If P is true, then Q must be 

true” or “If we accept P, then we must accept Q”, so in the formalization of com-

mon reasoning we would use statements such as “If P, then it is usually Q”, “If P 

is acceptable, then Q is acceptable”, “If P is probable, then Q is probable.” 
36 To date, we have not found any studies that would show how these logics 

can be practically applied in the formal analysis of an enthymeme. 
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